
Plumbum Shell Combinators
Documentation

Release 1.8.2

Tomer Filiba

Jun 01, 2023

CONTENTS

1 News 3

2 Cheat Sheet 5
2.1 Basics . 5
2.2 Piping . 5
2.3 Redirection . 6
2.4 Working-directory manipulation . 6
2.5 Foreground and background execution . 6
2.6 Command nesting . 7
2.7 Remote commands (over SSH) . 7
2.8 CLI applications . 7
2.9 Colors and Styles . 8

3 Development and Installation 9
3.1 Requirements . 9
3.2 Download . 9

4 User Guide 11
4.1 Local Commands . 11
4.2 Paths . 16
4.3 The Local Object . 18
4.4 Remote . 20
4.5 Utilities . 25
4.6 Command-Line Interface (CLI) . 25
4.7 TypedEnv . 36
4.8 Colors . 38
4.9 Change Log . 42
4.10 Quick reference guide . 49

5 API Reference 55
5.1 Package plumbum.cli . 55
5.2 Package plumbum.commands . 64
5.3 Package plumbum.machines . 75
5.4 Package plumbum.path . 90
5.5 Package plumbum.fs . 102
5.6 Package plumbum.colors . 104
5.7 Colorlib design . 114

6 About 121

7 Credits 123

i

Python Module Index 125

Index 127

ii

Plumbum Shell Combinators Documentation, Release 1.8.2

Ever wished the compactness of shell scripts be put into a real programming language? Say hello to Plumbum Shell
Combinators. Plumbum (Latin for lead, which was used to create pipes back in the day) is a small yet feature-rich
library for shell script-like programs in Python. The motto of the library is “Never write shell scripts again”, and
thus it attempts to mimic the shell syntax (shell combinators) where it makes sense, while keeping it all Pythonic and
cross-platform.

Apart from shell-like syntax and handy shortcuts, the library provides local and remote command execution (over
SSH), local and remote file-system paths, easy working-directory and environment manipulation, quick access to ANSI
colors, and a programmatic Command-Line Interface (CLI) application toolkit. Now let’s see some code!

CONTENTS 1

Plumbum Shell Combinators Documentation, Release 1.8.2

2 CONTENTS

CHAPTER

ONE

NEWS

• 2023.01.01: Version 1.8.1 released with hatchling replacing setuptools for the build system, and support for Path
objects in local.

• 2022.10.05: Version 1.8.0 released with NO_COLOR/FORCE_COLOR, all_markers & future annotations for the
CLI, some command enhancements, & Python 3.11 testing.

• 2021.12.23: Version 1.7.2 released with very minor fixes, final version to support Python 2.7 and 3.5.

• 2021.11.23: Version 1.7.1 released with a few features like reverse tunnels, color group titles, and a glob path
fix. Better Python 3.10 support.

• 2021.02.08: Version 1.7.0 released with a few new features like .with_cwd, some useful bugfixes, and lots of
cleanup.

• 2020.03.23: Version 1.6.9 released with several Path fixes, final version to support Python 2.6.

• 2019.10.30: Version 1.6.8 released with local.cmd, a few command updates, Set improvements, and
TypedEnv.

• 2018.08.10: Version 1.6.7 released with several minor additions, mostly to CLI apps, and run_*modifiers added.

• 2018.02.12: Version 1.6.6 released with one more critical bugfix for a error message regression in 1.6.5.

• 2017.12.29: Version 1.6.5 released with mostly bugfixes, including a critical one that could break pip installs on
some platforms. English cli apps now load as fast as before the localization update.

• 2017.11.27: Version 1.6.4 released with new CLI localization support. Several bugfixes and better pathlib com-
patibility, along with better separation between Plumbum’s internal packages.

• 2016.12.31: Version 1.6.3 released to provide Python 3.6 compatibility. Mostly bugfixes, several smaller im-
provements to paths, and a provisional config parser added.

• 2016.12.3: Version 1.6.2 is now available through conda-forge, as well.

• 2016.6.25: Version 1.6.2 released. This is mostly a bug fix release, but a few new features are included. Modifiers
allow some new arguments, and Progress is improved. Better support for SunOS and other OS’s.

• 2015.12.18: Version 1.6.1 released. The release mostly contains smaller fixes for CLI, 2.6/3.5 support, and
colors. PyTest is now used for tests, and Conda is supported.

• 2015.10.16: Version 1.6.0 released. Highlights include Python 3.5 compatibility, the plumbum.colors package,
Path becoming a subclass of str and a host of bugfixes. Special thanks go to Henry for his efforts.

• 2015.07.17: Version 1.5.0 released. This release brings a host of bug fixes, code cleanups and some experimental
new features (be sure to check the changelog). Also, say hi to Henry Schreiner, who has joined as a member of
the project.

• Change Log

• Quick reference guide

3

https://conda-forge.github.io
https://github.com/henryiii

Plumbum Shell Combinators Documentation, Release 1.8.2

4 Chapter 1. News

CHAPTER

TWO

CHEAT SHEET

2.1 Basics

>>> from plumbum import local
>>> ls = local["ls"]
>>> ls
LocalCommand(<LocalPath /bin/ls>)
>>> ls()
'build.py\ndist\ndocs\nLICENSE\nplumbum\nREADME.rst\nsetup.py\ntests\ntodo.txt\n'
>>> notepad = local["c:\\windows\\notepad.exe"]
>>> notepad() # Notepad window pops up
'' # Notepad window is closed by user,␣
→˓command returns

Instead of writing xxx = local["xxx"] for every program you wish to use, you can also import commands:

>>> from plumbum.cmd import grep, wc, cat, head
>>> grep
LocalCommand(<LocalPath /bin/grep>)

Or, use the local.cmd syntactic-sugar:

>>> local.cmd.ls
LocalCommand(<LocalPath /bin/ls>)
>>> local.cmd.ls()
'build.py\ndist\ndocs\nLICENSE\nplumbum\nREADME.rst\nsetup.py\ntests\ntodo.txt\n'

See Local Commands.

2.2 Piping

>>> chain = ls["-a"] | grep["-v", "\\.py"] | wc["-l"]
>>> print(chain)
/bin/ls -a | /bin/grep -v '\.py' | /usr/bin/wc -l
>>> chain()
'13\n'

See Pipelining.

5

Plumbum Shell Combinators Documentation, Release 1.8.2

2.3 Redirection

>>> ((cat < "setup.py") | head["-n", 4])()
'#!/usr/bin/env python3\nimport os\n\ntry:\n'
>>> (ls["-a"] > "file.list")()
''
>>> (cat["file.list"] | wc["-l"])()
'17\n'

See Input/Output Redirection.

2.4 Working-directory manipulation

>>> local.cwd
<Workdir /home/tomer/workspace/plumbum>
>>> with local.cwd(local.cwd / "docs"):
... chain()
...
'15\n'

A more explicit, and thread-safe way of running a command in a different directory is using the .with_cwd() method:

.. code-block:: python

>>> ls_in_docs = local.cmd.ls.with_cwd("docs")
>>> ls_in_docs()
'api\nchangelog.rst\n_cheatsheet.rst\ncli.rst\ncolorlib.rst\n_color_list.html\ncolors.
→˓rst\nconf.py\nindex.rst\nlocal_commands.rst\nlocal_machine.rst\nmake.bat\nMakefile\n_
→˓news.rst\npaths.rst\nquickref.rst\nremote.rst\n_static\n_templates\ntyped_env.rst\
→˓nutils.rst\n'

See Paths and The Local Object.

2.5 Foreground and background execution

>>> from plumbum import FG, BG
>>> (ls["-a"] | grep["\\.py"]) & FG # The output is printed to stdout directly
build.py
.pydevproject
setup.py
>>> (ls["-a"] | grep["\\.py"]) & BG # The process runs "in the background"
<Future ['/bin/grep', '\\.py'] (running)>

See Background and Foreground.

6 Chapter 2. Cheat Sheet

Plumbum Shell Combinators Documentation, Release 1.8.2

2.6 Command nesting

>>> from plumbum.cmd import sudo
>>> print(sudo[ifconfig["-a"]])
/usr/bin/sudo /sbin/ifconfig -a
>>> (sudo[ifconfig["-a"]] | grep["-i", "loop"]) & FG
lo Link encap:Local Loopback

UP LOOPBACK RUNNING MTU:16436 Metric:1

See Command Nesting.

2.7 Remote commands (over SSH)

Supports openSSH-compatible clients, PuTTY (on Windows) and Paramiko (a pure-Python implementation of SSH2):

>>> from plumbum import SshMachine
>>> remote = SshMachine("somehost", user = "john", keyfile = "/path/to/idrsa")
>>> r_ls = remote["ls"]
>>> with remote.cwd("/lib"):
... (r_ls | grep["0.so.0"])()
...
'libusb-1.0.so.0\nlibusb-1.0.so.0.0.0\n'

See Remote.

2.8 CLI applications

import logging
from plumbum import cli

class MyCompiler(cli.Application):
verbose = cli.Flag(["-v", "--verbose"], help = "Enable verbose mode")
include_dirs = cli.SwitchAttr("-I", list = True, help = "Specify include directories

→˓")

@cli.switch("-loglevel", int)
def set_log_level(self, level):

"""Sets the log-level of the logger"""
logging.root.setLevel(level)

def main(self, *srcfiles):
print("Verbose:", self.verbose)
print("Include dirs:", self.include_dirs)
print("Compiling:", srcfiles)

if __name__ == "__main__":
MyCompiler.run()

2.6. Command nesting 7

https://www.openssh.com/
https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://github.com/paramiko/paramiko/

Plumbum Shell Combinators Documentation, Release 1.8.2

2.8.1 Sample output

$ python3 simple_cli.py -v -I foo/bar -Ispam/eggs x.cpp y.cpp z.cpp
Verbose: True
Include dirs: ['foo/bar', 'spam/eggs']
Compiling: ('x.cpp', 'y.cpp', 'z.cpp')

See Command-Line Interface (CLI).

2.9 Colors and Styles

from plumbum import colors
with colors.red:

print("This library provides safe, flexible color access.")
print(colors.bold | "(and styles in general)", "are easy!")

print("The simple 16 colors or",
colors.orchid & colors.underline | '256 named colors,',
colors.rgb(18, 146, 64) | "or full rgb colors" ,
'can be used.')

print("Unsafe " + colors.bg.dark_khaki + "color access" + colors.bg.reset + " is␣
→˓available too.")

2.9.1 Sample output

See Colors.

8 Chapter 2. Cheat Sheet

CHAPTER

THREE

DEVELOPMENT AND INSTALLATION

The library is developed on GitHub, and will happily accept patches from users. Please use the GitHub’s built-in issue
tracker to report any problem you encounter or to request features. The library is released under the permissive MIT
license.

3.1 Requirements

Plumbum supports Python 3.6-3.10 and PyPy and is continually tested on Linux, Mac, and Windows machines
through GitHub Actions. Any Unix-like machine should work fine out of the box, but on Windows, you’ll probably
want to install a decent coreutils environment and add it to your PATH, or use WSL(2). I can recommend mingw
(which comes bundled with Git for Windows), but cygwin should work too. If you only wish to use Plumbum as a
Popen-replacement to run Windows programs, then there’s no need for the Unix tools.

Note that for remote command execution, an openSSH-compatible client is required (also bundled with Git for Win-
dows), and a bash-compatible shell and a coreutils environment is also expected on the host machine.

This project uses setuptools to build wheels; and setuptools_scm is required for building SDists. These depen-
dencies will be handled for you by PEP 518 compatible builders, like build and pip 10+.

3.2 Download

You can download the library from the Python Package Index (in a variety of formats), or run pip install
plumbum directly. If you use Anaconda, you can also get it from the conda-forge channel with conda install
-c conda-forge plumbum.

9

https://github.com/tomerfiliba/plumbum
https://docs.github.com/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request
https://github.com/tomerfiliba/plumbum/issues
https://github.com/tomerfiliba/plumbum/issues
https://github.com/tomerfiliba/plumbum/blob/master/LICENSE
https://github.com/tomerfiliba/plumbum/blob/master/LICENSE
https://github.com/tomerfiliba/plumbum/actions
https://en.wikipedia.org/wiki/GNU_Core_Utilities/
https://mingw.osdn.io/
https://gitforwindows.org/
http://www.cygwin.com/
https://github.com/pypa/build
https://pypi.org/pypi/plumbum/#files

Plumbum Shell Combinators Documentation, Release 1.8.2

10 Chapter 3. Development and Installation

CHAPTER

FOUR

USER GUIDE

The user guide covers most of the features of Plumbum, with lots of code-snippets to get you swimming in no time. It
introduces the concepts and “syntax” gradually, so it’s recommended you read it in order. A quick reference guide is
available.

4.1 Local Commands

Plumbum exposes a special singleton object named local, which represents your local machine and serves as a factory
for command objects:

>>> from plumbum import local
>>>
>>> ls = local["ls"]
>>> ls
<LocalCommand C:\Program Files\Git\bin\ls.exe>
>>> notepad = local["c:\\windows\\notepad.exe"]
>>> notepad
<LocalCommand c:\windows\notepad.exe>

If you don’t specify a full path, the program is searched for in your system’s PATH (and if no match is found, a
CommandNotFound exception is raised). Otherwise, the full path is used as given. Once you have a Command ob-
ject, you can execute it like a normal function:

>>> ls()
'README.rst\nplumbum\nsetup.py\ntests\ntodo.txt\n'
>>> ls("-a")
'.\n..\n.git\n.gitignore\n.project\n.pydevproject\nREADME.rst\n[...]'

For convenience with the common case, you can use the .cmd magic property instead of the subscription syntax:

>>> ls = local.cmd.ls
>>> ls
<LocalCommand C:\Program Files\Git\bin\ls.exe>

New in version 1.7: The .cmd commands provider object If you use the .get() method instead of [], you can include
fallbacks to try if the first command does not exist on the machine. This can be used to get one of several equivalent
commands, or it can be used to check for common locations of a command if not in the path. For example:

pandoc = local.get('pandoc',
'~/AppData/Local/Pandoc/pandoc.exe',

(continues on next page)

11

Plumbum Shell Combinators Documentation, Release 1.8.2

(continued from previous page)

'/Program Files/Pandoc/pandoc.exe',
'/Program Files (x86)/Pandoc/pandoc.exe')

An exception is still raised if none of the commands are found. Unlike [] access, an exception will be raised if the
executable does not exist.

New in version 1.6: The .get method With just a touch of magic, you can import commands from the mock module
cmd, like so:

>>> from plumbum.cmd import grep, cat
>>> cat
<LocalCommand C:\Program Files\Git\bin\cat.exe>

Note: There’s no real module named plumbum.cmd; it’s a dynamically-created “module”, injected into sys.modules
to enable the use of from plumbum.cmd import foo. As of version 1.1, you can actually import plumbum.cmd,
for consistency, but it’s not recommended.

It is important to stress that from plumbum.cmd import foo translates to local["foo"] behind the scenes.

If underscores (_) appear in the name, and the name cannot be found in the path as-is, the underscores will be replaced
by hyphens (-) and the name will be looked up again. This allows you to import apt_get for apt-get.

4.1.1 Pipelining

In order to form pipelines and other chains, we must first learn to bind arguments to commands. As you’ve seen,
invoking a command runs the program; by using square brackets (__getitem__), we can create bound commands:

>>> ls["-l"]
BoundCommand(<LocalCommand C:\Program Files\Git\bin\ls.exe>, ('-l',))
>>> grep["-v", ".py"]
BoundCommand(<LocalCommand C:\Program Files\Git\bin\grep.exe>, ('-v', '.py'))

You can think of bound commands as commands that “remember” their arguments. Creating a bound command does
not run the program; in order to run it, you’ll need to call (invoke) it, like so: ls["-l"]() (in fact, ls["-l"]() is
equivalent to ls("-l")).

Now that we can bind arguments to commands, forming pipelines is easy and straight-forwards, using | (bitwise-or):

>>> chain = ls["-l"] | grep[".py"]
>>> print(chain)
C:\Program Files\Git\bin\ls.exe -l | C:\Program Files\Git\bin\grep.exe .py
>>>
>>> chain()
'-rw-r--r-- 1 sebulba Administ 0 Apr 27 11:54 setup.py\n'

Note: Unlike common posix shells, plumbum only captures stderr of the last command in a pipeline. If any of the
other commands writes a large amount of text to the stderr, the whole pipeline will stall (large amount equals to >64k
on posix systems). This can happen with bioinformatics tools that write progress information to stderr. To avoid this
issue, you can discard stderr of the first commands or redirect it to a file.

>>> chain = (bwa["mem", ...] >= "/dev/null") | samtools["view", ...]

12 Chapter 4. User Guide

Plumbum Shell Combinators Documentation, Release 1.8.2

4.1.2 Input/Output Redirection

We can also use redirection into files (or any object that exposes a real fileno()). If a string is given, it is assumed
to be a file name, and a file with that name is opened for you. In this example, we’re reading from stdin into grep
world, and redirecting the output to a file named tmp.txt:

>>> import sys
>>> ((grep["world"] < sys.stdin) > "tmp.txt")()
hello
hello world
what has the world become?
foo # Ctrl+D pressed
''

Note: Parentheses are required here! grep["world"] < sys.stdin > "tmp.txt" would be evaluated according
to the rules for chained comparison operators and result an exception.

Right after foo, Ctrl+D was pressed, which caused grep to finish. The empty string at the end is the command’s
stdout (and it’s empty because it actually went to a file). Lo and behold, the file was created:

>>> cat("tmp.txt")
'hello world\nwhat has the world become?\n'

If you need to send input into a program (through its stdin), instead of writing the data to a file and redirecting this
file into stdin, you can use the shortcut << (shift-left):

>>> (cat << "hello world\nfoo\nbar\spam" | grep["oo"]) ()
'foo\n'

4.1.3 Exit Codes

If the command we’re running fails (returns a non-zero exit code), we’ll get an exception:

>>> cat("non/existing.file")
Traceback (most recent call last):
[...]

ProcessExecutionError: Unexpected exit code: 1
Command line: | /bin/cat non/existing.file
Stderr: | /bin/cat: non/existing.file: No such file or directory

In order to avoid such exceptions, or when a different exit code is expected, just pass retcode = xxx as a keyword
argument. If retcode is None, no exception checking is performed (any exit code is accepted); otherwise, the exit
code is expected to match the one you passed:

>>> cat("non/existing.file", retcode = None)
''
>>> cat("non/existing.file", retcode = 17)
Traceback (most recent call last):

(continues on next page)

4.1. Local Commands 13

https://docs.python.org/reference/expressions.html#comparisons

Plumbum Shell Combinators Documentation, Release 1.8.2

(continued from previous page)

[...]
ProcessExecutionError: Unexpected exit code: 1
Command line: | /bin/cat non/existing.file
Stderr: | /bin/cat: non/existing.file: No such file or directory

Note: If you wish to accept several valid exit codes, retcode may be a tuple or a list. For instance, grep("foo",
"myfile.txt", retcode = (0, 2))

If you need to have both the output/error and the exit code (using exceptions would provide either but not both), you
can use the run method, which will provide all of them

>>> cat["non/existing.file"].run(retcode=None)
(1, '', '/bin/cat: non/existing.file: No such file or directory\n')

If you need the value of the exit code, there are two ways to do it. You can call .run(retcode=None) (or any other
valid retcode value) on a command, you will get a tuple (retcode, stdout, stderr) (see Run and Popen. If you
just need the retcode, or want to check the retcode, there are two special objects that can be applied to your command
to run it and get or test the retcode. For example:

>>> cat["non/existing.file"] & RETCODE
1
>>> cat["non/existing.file"] & TF
False
>>> cat["non/existing.file"] & TF(1)
True

Note: If you want to run these commands in the foreground (see Background and Foreground), you can give FG=True
to TF or RETCODE. For instance, cat["non/existing.file"] & TF(1,FG=True)

New in version 1.5: The TF and RETCODE modifiers

4.1.4 Run and Popen

Notice that calling commands (or chained-commands) only returns their stdout. In order to get hold of the exit code
or stderr, you’ll need to use the run method, which returns a 3-tuple of the exit code, stdout, and stderr:

>>> ls.run("-a")
(0, '.\n..\n.git\n.gitignore\n.project\n.pydevproject\nREADME.rst\nplumbum\[...]', '')

You can also pass retcode as a keyword argument to run in the same way discussed above.

And, if you want to want to execute commands “in the background” (i.e., not wait for them to finish), you can use the
popen method, which returns a normal subprocess.Popen object:

>>> p = ls.popen("-a")
>>> p.communicate()
('.\n..\n.git\n.gitignore\n.project\n.pydevproject\nREADME.rst\nplumbum\n[...]', '')

You can read from its stdout, wait() for it, terminate() it, etc.

14 Chapter 4. User Guide

Plumbum Shell Combinators Documentation, Release 1.8.2

4.1.5 Background and Foreground

In order to make programming easier, there are two special objects called FG and BG, which are there to help you. FG
runs programs in the foreground (they receive the parent’s stdin, stdout and stderr), and BG runs programs in the
background (much like popen above, but it returns a Future object, instead of a subprocess.Popen one). FG is
especially useful for interactive programs like editors, etc., that require a TTY or input from the user.

>>> from plumbum import FG, BG
>>> ls["-l"] & FG
total 5
-rw-r--r-- 1 sebulba Administ 4478 Apr 29 15:02 README.rst
drwxr-xr-x 2 sebulba Administ 4096 Apr 27 12:18 plumbum
-rw-r--r-- 1 sebulba Administ 0 Apr 27 11:54 setup.py
drwxr-xr-x 2 sebulba Administ 0 Apr 27 11:54 tests
-rw-r--r-- 1 sebulba Administ 18 Apr 27 11:54 todo.txt

Note: The output of ls went straight to the screen

>>> ls["-a"] & BG
<Future ['C:\\Program Files\\Git\\bin\\ls.exe', '-a'] (running)>
>>> f = _
>>> f.ready()
False
>>> f.wait()
>>> f.stdout
'.\n..\n.git\n.gitignore\n.project\n.pydevproject\nREADME.rst\nplumbum\n[...]'

If you want to redirect the output, you can pass those arguments to the BG modifier. So the command ls &
BG(stdout=sys.stdout, stderr=sys.stderr) has exactly the same effect as ls & in a terminal.

You can also start a long running process and detach it in nohup mode using the NOHUP modifier:

>>> ls["-a"] & NOHUP

If you want to redirect the input or output to something other than nohup.out, you can add parameters to the modifier:

>>> ls["-a"] & NOHUP(stdout='/dev/null') # Or None

New in version 1.6: The NOHUP modifier

You can also use the TEE modifier, which causes output to be redirected to the screen (like FG), but also provides access
to the output (like BG).

4.1.6 Command Nesting

The arguments of commands can be strings (or any object that can meaningfully-convert to a string), as we’ve seen
above, but they can also be other commands! This allows nesting commands into one another, forming complex
command objects. The classic example is sudo:

>>> from plumbum.cmd import sudo
>>> print(sudo[ls["-l", "-a"]])
/usr/bin/sudo /bin/ls -l -a

(continues on next page)

4.1. Local Commands 15

Plumbum Shell Combinators Documentation, Release 1.8.2

(continued from previous page)

>>> sudo[ls["-l", "-a"]]()
'total 22\ndrwxr-xr-x 8 sebulba Administ 4096 May 9 20:46 .\n[...]'

In fact, you can nest even command-chains (i.e., pipes and redirections), e.g., sudo[ls | grep["\\.py"]]; however,
that would require that the top-level program be able to handle these shell operators, and this is not the case for sudo.
sudo expects its argument to be an executable program, and it would complain about | not being one. So, there’s a
inherent difference between between sudo[ls | grep["\\.py"]] and sudo[ls] | grep["\\.py"] (where the
pipe is unnested) – the first would fail, the latter would work as expected.

Some programs (mostly shells) will be able to handle pipes and redirections – an example of such a program is ssh.
For instance, you could run ssh["somehost", ls | grep["\\.py"]](); here, both ls and grep would run on
somehost, and only the filtered output would be sent (over SSH) to our machine. On the other hand, an invocation
such as (ssh["somehost", ls] | grep["\\.py"])() would run ls on somehost, send its entire output to our
machine, and grep would filter it locally.

We’ll learn more about remote command execution later. In the meanwhile, we should learn that command nesting
works by shell-quoting (or shell-escaping) the nested command. Quoting normally takes place from the second level
of nesting:

>>> print(ssh["somehost", ssh["anotherhost", ls | grep["\\.py"]]])
/bin/ssh somehost /bin/ssh anotherhost /bin/ls '|' /bin/grep "'\\.py'"

In this example, we first ssh to somehost, from it we ssh to anotherhost, and on that host we run the command chain.
As you can see, | and the backslashes have been quoted, to prevent them from executing on the first-level shell; this
way, they would safey get to the second-level shell.

For further information, see the api docs.

4.2 Paths

Apart from commands, Plumbum provides an easy to use path class that represents file system paths. Paths are returned
from several plumbum commands, and local paths can be directly created by local.path(). Paths are always absolute
and are immutable, may refer to a remote machine, and can be used like a str. In many respects, paths provide a similar
API to pathlib in the Python 3.4+ standard library, with a few improvements and extra features.

New in version 1.6: Paths now support more pathlib like syntax, several old names have been depreciated, like .
basename

The primary ways to create paths are from .cwd, .env.home, or .path(...) on a local or remote machine, with /,
// or [] for composition.

Note: The path returned from .cwd can also be used in a context manager and has a .chdir(path) function. See
The Local Object for an example.

Paths provide a variety of functions that allow you to check the status of a file:

>>> p = local.path("c:\\windows")
>>> p.exists()
True
>>> p.is_dir()
True

(continues on next page)

16 Chapter 4. User Guide

Plumbum Shell Combinators Documentation, Release 1.8.2

(continued from previous page)

>>> p.is_file()
False

Besides checking to see if a file exists, you can check the type of file using .is_dir(), is_file(), or is_symlink().
You can access details about the file using the properties .dirname, .drive, .root, .name, .suffix, and .stem (all
suffixes). General stats can be obtained with .stat().

You can use .with_suffix(suffix, depth=1) to replace the last depth suffixes with a new suffix. If you specify
None for the depth, it will replace all suffixes (for example, .tar.gz is two suffixes). Note that a name like file.
name.10.15.tar.gz will have “5” suffixes. Also available is .with_name(name), which will will replace the entire
name. preferred_suffix(suffix) will add a suffix if one does not exist (for default suffix situations).

Paths can be composed using / or []:

>>> p / "notepad.exe"
<LocalPath c:\windows\notepad.exe>
>>> (p / "notepad.exe").is_file()
True
>>> (p / "notepad.exe").with_suffix(".dll")
<LocalPath c:\windows\notepad.dll>
>>> p["notepad.exe"].is_file()
True
>>> p["../some/path"]["notepad.exe"].with_suffix(".dll")
<LocalPath c:\windows\notepad.dll>

You can also iterate over directories to get the contents:

>>> for p2 in p:
... print(p2)
...
c:\windows\addins
c:\windows\appcompat
c:\windows\apppatch
...

Paths also supply .iterdir(), which may be faster on Python 3.5.

Globing can be easily performed using // (floor division)::

>>> p // "*.dll"
[<LocalPath c:\windows\masetupcaller.dll>, ...]
>>> p // "*/*.dll"
[<LocalPath c:\windows\apppatch\acgenral.dll>, ...]
>>> local.cwd / "docs" // "*.rst"
[<LocalPath d:\workspace\plumbum\docs\cli.rst>, ...]

New in version 1.6: Globing a tuple will glob for each of the items in the tuple, and return the aggregated result.

Files can be opened and read directly::

>>> with(open(local.cwd / "docs" / "index.rst")) as f:
... print(read(f))
<...output...>

New in version 1.6: Support for treating a path exactly like a str, so they can be used directly in open().

4.2. Paths 17

Plumbum Shell Combinators Documentation, Release 1.8.2

Paths also supply .delete(), .copy(destination, override=False), and .move(destination). On sys-
tems that support it, you can also use .symlink(destination), .link(destination), and .unlink(). You
can change permissions with .chmod(mode), and change owners with .chown(owner=None, group=None,
recursive=None). If recursive is None, this will be recursive only if the path is a directory.

For copy, move, or delete in a more general helper function form, see the utils modules.

Relative paths can be computed using .relative_to(source) or mypath - basepath, though it should be noted
that relative paths are not as powerful as absolute paths, and are primarily for recording a path or printing.

For further information, see the api docs.

4.3 The Local Object

So far we’ve only seen running local commands, but there’s more to the local object than this; it aims to “fully
represent” the local machine.

First, you should get acquainted with which, which performs program name resolution in the system PATH and returns
the first match (or raises an exception if no match is found):

>>> local.which("ls")
<LocalPath C:\Program Files\Git\bin\ls.exe>
>>> local.which("nonexistent")
Traceback (most recent call last):

[...]
plumbum.commands.CommandNotFound: ('nonexistent', [...])

Another member is python, which is a command object that points to the current interpreter (sys.executable):

>>> local.python
<LocalCommand c:\python310\python.exe>
>>> local.python("-c", "import sys;print(sys.version)")
'3.10.0 (default, Feb 2 2022, 02:22:22) [MSC v.1931 64 bit (Intel)]\r\n'

4.3.1 Working Directory

The local.cwd attribute represents the current working directory. You can change it like so:

>>> local.cwd
<Workdir d:\workspace\plumbum>
>>> local.cwd.chdir("d:\\workspace\\plumbum\\docs")
>>> local.cwd
<Workdir d:\workspace\plumbum\docs>

You can also use it as a context manager, so it behaves like pushd/popd:

>>> ls_l = ls | wc["-l"]
>>> with local.cwd("c:\\windows"):
... print(f"{local.cwd}:{ls_l()}")
... with local.cwd("c:\\windows\\system32"):
... print(f"{local.cwd}:{ls_l()}")
...
c:\windows: 105

(continues on next page)

18 Chapter 4. User Guide

Plumbum Shell Combinators Documentation, Release 1.8.2

(continued from previous page)

c:\windows\system32: 3013
>>> print(f"{local.cwd}:{ls_l()}")
d:\workspace\plumbum: 9

Finally, A more explicit and thread-safe way of running a command in a different directory is using the .with_cwd()
method:

>>> ls_in_docs = local.cmd.ls.with_cwd("docs")
>>> ls_in_docs()
'api\nchangelog.rst\n_cheatsheet.rst\ncli.rst\ncolorlib.rst\n_color_list.html\ncolors.
→˓rst\nconf.py\nindex.rst\nlocal_commands.rst\nlocal_machine.rst\nmake.bat\nMakefile\n_
→˓news.rst\npaths.rst\nquickref.rst\nremote.rst\n_static\n_templates\ntyped_env.rst\
→˓nutils.rst\n'

4.3.2 Environment

Much like cwd, local.env represents the local environment. It is a dictionary-like object that holds environment
variables, which you can get/set intuitively:

>>> local.env["JAVA_HOME"]
'C:\\Program Files\\Java\\jdk1.6.0_20'
>>> local.env["JAVA_HOME"] = "foo"

And similarity to cwd is the context-manager nature of env; each level would have it’s own private copy of the envi-
ronment:

>>> with local.env(FOO="BAR"):
... local.python("-c", "import os; print(os.environ['FOO'])")
... with local.env(FOO="SPAM"):
... local.python("-c", "import os; print(os.environ['FOO'])")
... local.python("-c", "import os; print(os.environ['FOO'])")
...
'BAR\r\n'
'SPAM\r\n'
'BAR\r\n'
>>> local.python("-c", "import os;print(os.environ['FOO'])")
Traceback (most recent call last):

[...]
ProcessExecutionError: Unexpected exit code: 1
Command line: | /usr/bin/python3 -c "import os; print(os.environ['FOO'])"
Stderr: | Traceback (most recent call last):

| File "<string>", line 1, in <module>
| File "/usr/lib/python3.10/os.py", line 725, in __getitem__
| raise KeyError(key) from None
| KeyError: 'FOO'

In order to make cross-platform-ness easier, the local.env object provides some convenience properties for getting
the username (.user), the home path (.home), and the executable path (path) as a list. For instance:

>>> local.env.user
'sebulba'

(continues on next page)

4.3. The Local Object 19

Plumbum Shell Combinators Documentation, Release 1.8.2

(continued from previous page)

>>> local.env.home
<Path c:\Users\sebulba>
>>> local.env.path
[<Path c:\python39\lib\site-packages\gtk-2.0\runtime\bin>, <Path c:\Users\sebulba\bin>, .
→˓..]
>>>
>>> local.which("python")
<Path c:\python39\python.exe>
>>> local.env.path.insert(0, "c:\\python310")
>>> local.which("python")
<Path c:\python310\python.exe>

For further information, see the api docs.

4.4 Remote

Just like running local commands, Plumbum supports running commands on remote systems, by executing them over
SSH.

4.4.1 Remote Machines

Forming a connection to a remote machine is very straight forward:

>>> from plumbum import SshMachine
>>> rem = SshMachine("hostname", user = "john", keyfile = "/path/to/idrsa")
>>> # ...
>>> rem.close()

Or as a context-manager:

>>> with SshMachine("hostname", user = "john", keyfile = "/path/to/idrsa") as rem:
... pass

Note: SshMachine requires ssh (openSSH or compatible) installed on your system in order to connect to remote
machines. The remote machine must have bash as the default shell (or any shell that supports the 2>&1 syntax for
stderr redirection). Alternatively, you can use the pure-Python implementation of ParamikoMachine.

Only the hostname parameter is required, all other parameters are optional. If the host has your id-rsa.pub key in
its authorized_keys file, or if you’ve set up your ~/.ssh/config to login with some user and keyfile, you can
simply use rem = SshMachine("hostname").

Much like the local object, remote machines expose which(), path(), python, cwd and env. You can also run remote
commands, create SSH tunnels, upload/download files, etc. You may also refer to the full API, as this guide will
only survey the features.

Note: PuTTY users on Windows should use the dedicated PuttyMachine instead of SshMachine. See also
ParamikoMachine.

New in version 1.0.1.

20 Chapter 4. User Guide

http://www.chiark.greenend.org.uk/~sgtatham/putty/

Plumbum Shell Combinators Documentation, Release 1.8.2

Working Directory and Environment

The cwd and env attributes represent the remote machine’s working directory and environment variables, respectively,
and can be used to inspect or manipulate them. Much like their local counterparts, they can be used as context managers,
so their effects can be contained.

>>> rem.cwd
<Workdir /home/john>
>>> with rem.cwd(rem.cwd / "Desktop"):
... print(rem.cwd)
/home/john/Desktop
>>> rem.env["PATH"]
/bin:/sbin:/usr/bin:/usr/local/bin
>>> rem.which("ls")
<RemotePath /bin/ls>

Tunneling

SSH tunneling is a very useful feature of the SSH protocol. It allows you to connect from your machine to a remote
server process, while having your connection authenticated and encrypted out-of-the-box. Say you run on machine-A,
and you wish to connect to a server program running on machine-B. That server program binds to localhost:8888
(where localhost refers naturally to to machine-B). Using Plumbum, you can easily set up a tunnel from port 6666
on machine-A to port 8888 on machine-B:

>>> tun = rem.tunnel(6666, 8888)
>>> # ...
>>> tun.close()

Or as a context manager:

>>> with rem.tunnel(6666, 8888):
... pass

You can now connect a socket to machine-A:6666, and it will be securely forwarded over SSH to machine-B:8888.
When the tunnel object is closed, all active connections will be dropped.

4.4.2 Remote Commands

Like local commands, remote commands are created using indexing ([]) on a remote machine object. You can either
pass the command’s name, in which case it will be resolved by through which, or the path to the program.

>>> rem["ls"]
<RemoteCommand(<RemoteMachine ssh://hostname>, '/bin/ls')>
>>> rem["/usr/local/bin/python3.2"]
<RemoteCommand(<RemoteMachine ssh://hostname>, '/usr/local/bin/python3.2')>
>>> r_ls = rem["ls"]
>>> r_grep = rem["grep"]
>>> r_ls()
'foo\nbar\spam\n'

4.4. Remote 21

Plumbum Shell Combinators Documentation, Release 1.8.2

Nesting Commands

Remote commands can be nested just like local ones. In fact, that’s how the SshMachine operates behind the scenes -
it nests each command inside ssh. Here are some examples:

>>> r_sudo = rem["sudo"]
>>> r_ifconfig = rem["ifconfig"]
>>> print(r_sudo[r_ifconfig["-a"]]())
eth0 Link encap:Ethernet HWaddr ...
[...]

You can nest multiple commands, one within another. For instance, you can connect to some machine over SSH and
use that machine’s SSH client to connect to yet another machine. Here’s a sketch:

>>> from plumbum.cmd import ssh
>>> print(ssh["localhost", ssh["localhost", "ls"]])
/usr/bin/ssh localhost /usr/bin/ssh localhost ls
>>>
>>> ssh["localhost", ssh["localhost", "ls"]]()
'bin\nDesktop\nDocuments\n...'

Piping

Piping works for remote commands as well, but there’s a caveat to note here: the plumbing takes place on the local
machine! Consider this code for instance

>>> r_grep = rem["grep"]
>>> r_ls = rem["ls"]
>>> (r_ls | r_grep["b"])()
'bin\nPublic\n'

Although r_ls and r_grep are remote commands, the data is sent from r_ls to the local machine, which then sends
it to the remote one for running grep. This will be fixed in a future version of Plumbum.

It should be noted, however, that piping remote commands into local ones is perfectly fine. For example, the previous
code can be written as

>>> from plumbum.cmd import grep
>>> (r_ls | grep["b"])()
'bin\nPublic\n'

Which is even more efficient (no need to send data back and forth over SSH).

Redirection

Redirection to and from remote paths is not currently supported, but you can redirect to and from local paths, with the
familiar syntax explained in the corresponding section for local commands. Note that if the redirection target/source
is given as a string, it is automatically interpreted as a path on the local machine.

22 Chapter 4. User Guide

Plumbum Shell Combinators Documentation, Release 1.8.2

4.4.3 Paramiko Machine

New in version 1.1.

SshMachine relies on the system’s ssh client to run commands; this means that for each remote command you run, a
local process is spawned and an SSH connection is established. While relying on a well-known and trusted SSH client is
the most stable option, the incurred overhead of creating a separate SSH connection for each command may be too high.
In order to overcome this, Plumbum provides integration for paramiko, an open-source, pure-Python implementation
of the SSH2 protocol. This is the ParamikoMachine, and it works along the lines of the SshMachine:

>>> from plumbum.machines.paramiko_machine import ParamikoMachine
>>> rem = ParamikoMachine("192.168.1.143")
>>> rem["ls"]
RemoteCommand(<ParamikoMachine paramiko://192.168.1.143>, <RemotePath /bin/ls>)
>>> r_ls = rem["ls"]
>>> r_ls()
'bin\nDesktop\nDocuments\nDownloads\nexamples.desktop\nMusic\nPictures\n...'
>>> r_ls("-a")
'.\n..\n.adobe\n.bash_history\n.bash_logout\n.bashrc\nbin...'

Note: Using ParamikoMachine requires paramiko to be installed on your system. Also, you have to explicitly import
it (from plumbum.machines.paramiko_machine import ParamikoMachine) as paramiko is quite heavy.

Refer to the API docs for more details.

The main advantage of using ParamikoMachine is that only a single, persistent SSH connection is created, over
which commands execute. Moreover, paramiko has a built-in SFTP client, which is used instead of scp to copy files
(employed by the .download()/.upload() methods), and tunneling is much more light weight: In the SshMachine,
a tunnel is created by an external process that lives for as long as the tunnel is to remain active. The ParamikoMachine,
however, can simply create an extra channel on top of the same underlying connection with ease; this is exposed by
connect_sock(), which creates a tunneled TCP connection and returns a socket-like object

Warning: Piping and input/output redirection don’t really work with ParamikoMachine commands. You’ll
get all kinds of errors, like 'ChannelFile' object has no attribute 'fileno' or I/O operation on
closed file – this is due to the fact that Paramiko’s channels are not real, OS-level files, so they can’t interact
with subprocess.Popen.

This will be solved in a future release; in the meanwhile, you can use the machine’s .session() method, like so

>>> s = mach.session()
>>> s.run("ls | grep b")
(0, 'bin\nPublic\n', '')

4.4. Remote 23

https://github.com/paramiko/paramiko/

Plumbum Shell Combinators Documentation, Release 1.8.2

Tunneling Example

On 192.168.1.143, I ran the following sophisticated server (notice it’s bound to localhost):

>>> import socket
>>> s=socket.socket()
>>> s.bind(("localhost", 12345))
>>> s.listen(1)
>>> s2,_=s.accept()
>>> while True:
... data = s2.recv(1000)
... if not data:
... break
... s2.send("I eat " + data)
...

On my other machine, I connect (over SSH) to this host and then create a tunneled connection to port 12345, getting
back a socket-like object:

>>> rem = ParamikoMachine("192.168.1.143")
>>> s = rem.connect_sock(12345)
>>> s.send("carrot")
6
>>> s.recv(1000)
'I eat carrot'
>>> s.send("babies")
6
>>> s.recv(1000)
'I eat babies'
>>> s.close()

4.4.4 Remote Paths

Analogous to local paths, remote paths represent a file-system path of a remote system, and expose a set of utility
functions for iterating over subpaths, creating subpaths, moving/copying/ renaming paths, etc.

>>> p = rem.path("/bin")
>>> p / "ls"
<RemotePath /bin/ls>
>>> (p / "ls").is_file()
True
>>> rem.path("/dev") // "sd*"
[<RemotePath /dev/sda>, < RemotePath /dev/sdb>, <RemotePath /dev/sdb1>, <RemotePath /dev/
→˓sdb2>]

Note: See the Utilities guide for copying, moving and deleting remote paths

For further information, see the api docs.

24 Chapter 4. User Guide

Plumbum Shell Combinators Documentation, Release 1.8.2

4.5 Utilities

The utils module contains a collection of useful utility functions. Note that they are not imported into the namespace
of plumbum directly, and you have to explicitly import them, e.g. from plumbum.path.utils import copy.

• copy(src, dst) - Copies src to dst (recursively, if src is a directory). The arguments can be either local or
remote paths – the function will sort out all the necessary details.

– If both paths are local, the files are copied locally

– If one path is local and the other is remote, the function uploads/downloads the files

– If both paths refer to the same remote machine, the function copies the files locally on the remote machine

– If both paths refer to different remote machines, the function downloads the files to a temporary location
and then uploads them to the destination

• move(src, dst) - Moves src onto dst. The arguments can be either local or remote – the function will sort
our all the necessary details (as in copy)

• delete(*paths) - Deletes the given sequence of paths; each path may be a string, a local/remote path object,
or an iterable of paths. If any of the paths does not exist, the function silently ignores the error and continues.
For example

from plumbum.path.utils import delete
delete(local.cwd // "*/*.pyc", local.cwd // "*/__pycache__")

• gui_open(path) - Opens a file in the default editor on Windows, Mac, or Linux. Uses os.startfile if
available (Windows), xdg_open (GNU), or open (Mac).

4.6 Command-Line Interface (CLI)

The other side of executing programs with ease is writing CLI programs with ease. Python scripts normally use
optparse or the more recent argparse, and their derivatives; but all of these are somewhat limited in their expressive
power, and are quite unintuitive (and even unpythonic). Plumbum’s CLI toolkit offers a programmatic approach
to building command-line applications; instead of creating a parser object and populating it with a series of “options”,
the CLI toolkit translates these primitives into Pythonic constructs and relies on introspection.

From a bird’s eye view, CLI applications are classes that extend plumbum.cli.Application. They define a main()
method and optionally expose methods and attributes as command-line switches. Switches may take arguments, and
any remaining positional arguments are given to the main method, according to its signature. A simple CLI application
might look like this:

from plumbum import cli

class MyApp(cli.Application):
verbose = cli.Flag(["v", "verbose"], help = "If given, I will be very talkative")

def main(self, filename):
print(f"I will now read {filename}")
if self.verbose:

print("Yadda " * 200)

if __name__ == "__main__":
MyApp.run()

4.5. Utilities 25

https://pythonhosted.org/argh/index.html

Plumbum Shell Combinators Documentation, Release 1.8.2

And you can run it:

$ python3 example.py foo
I will now read foo

$ python3 example.py --help
example.py v1.0

Usage: example.py [SWITCHES] filename
Meta-switches:

-h, --help Prints this help message and quits
--version Prints the program's version and quits

Switches:
-v, --verbose If given, I will be very talkative

So far you’ve only seen the very basic usage. We’ll now start to explore the library.

New in version 1.6.1: You can also directly run the app, as MyApp(), without arguments, instead of calling .main().

4.6.1 Application

The Application class is the “container” of your application. It consists of the main() method, which you should
implement, and any number of CLI-exposed switch functions or attributes. The entry-point for your application is
the classmethod run, which instantiates your class, parses the arguments, invokes all switch functions, and then calls
main() with the given positional arguments. In order to run your application from the command-line, all you have to
do is

if __name__ == "__main__":
MyApp.run()

Aside from run() and main(), the Application class exposes two built-in switch functions: help() and version()
which take care of displaying the help and program’s version, respectively. By default, --help and -h invoke help(),
and --version and -v invoke version(); if any of these functions is called, the application will display the message
and quit (without processing any other switch).

You can customize the information displayed by help() and version by defining class-level attributes, such as
PROGNAME, VERSION and DESCRIPTION. For instance,

class MyApp(cli.Application):
PROGNAME = "Foobar"
VERSION = "7.3"

Colors

New in version 1.6.

Colors are supported. You can use a colored string on PROGNAME, VERSION and DESCRIPTION directly. If you set
PROGNAME to a color, you can get auto-naming and color. The color of the usage string is available as COLOR_USAGE.
The color of Usage: line itself may be specified using COLOR_USAGE_TITLE, otherwise it defaults to COLOR_USAGE.

Different groups can be colored with a dictionaries COLOR_GROUPS and COLOR_GROUP_TITLES.

For instance, the following is valid:

26 Chapter 4. User Guide

Plumbum Shell Combinators Documentation, Release 1.8.2

class MyApp(cli.Application):
PROGNAME = colors.green
VERSION = colors.blue | "1.0.2"
COLOR_GROUPS = {"Switches": colors.blue | "Meta-switches" : colors.yellow}
COLOR_GROUP_TITLES = {"Switches": colors.bold | colors.blue, "Meta-switches" :␣

→˓colors.bold & colors.yellow}
opts = cli.Flag("--ops", help=colors.magenta | "This is help")

4.6.2 Switch Functions

The decorator switch can be seen as the “heart and soul” of the CLI toolkit; it exposes methods of your CLI application
as CLI-switches, allowing them to be invoked from the command line. Let’s examine the following toy application:

class MyApp(cli.Application):
_allow_root = False # provide a default

@cli.switch("--log-to-file", str)
def log_to_file(self, filename):

"""Sets the file into which logs will be emitted"""
logger.addHandler(FileHandle(filename))

@cli.switch(["-r", "--root"])
def allow_as_root(self):

"""If given, allow running as root"""
self._allow_root = True

def main(self):
if os.geteuid() == 0 and not self._allow_root:

raise ValueError("cannot run as root")

When the program is run, the switch functions are invoked with their appropriate arguments; for instance, $./myapp.
py --log-to-file=/tmp/log would translate to a call to app.log_to_file("/tmp/log"). After all switches
were processed, control passes to main.

Note: Methods’ docstrings and argument names will be used to render the help message, keeping your code as DRY
as possible.

There’s also autoswitch, which infers the name of the switch from the function’s name, e.g.:

@cli.autoswitch(str)
def log_to_file(self, filename):

pass

Will bind the switch function to --log-to-file.

4.6. Command-Line Interface (CLI) 27

https://en.wikipedia.org/wiki/Don't_repeat_yourself

Plumbum Shell Combinators Documentation, Release 1.8.2

Arguments

As demonstrated in the example above, switch functions may take no arguments (not counting self) or a single argu-
ment. If a switch function accepts an argument, it must specify the argument’s type. If you require no special validation,
simply pass str; otherwise, you may pass any type (or any callable, in fact) that will take a string and convert it to
a meaningful object. If conversion is not possible, the type (or callable) is expected to raise either TypeError or
ValueError.

For instance:

class MyApp(cli.Application):
_port = 8080

@cli.switch(["-p"], int)
def server_port(self, port):

self._port = port

def main(self):
print(self._port)

$./example.py -p 17
17
$./example.py -p foo
Argument of -p expected to be <type 'int'>, not 'foo':

ValueError("invalid literal for int() with base 10: 'foo'",)

The toolkit includes two additional “types” (or rather, validators): Range and Set. Range takes a minimal value and
a maximal value and expects an integer in that range (inclusive). Set takes a set of allowed values, and expects the
argument to match one of these values. You can set case_sensitive=False, or add all_markers={"*", "all"}
if you want to have a “trigger all markers” marker. Here’s an example:

class MyApp(cli.Application):
_port = 8080
_mode = "TCP"

@cli.switch("-p", cli.Range(1024,65535))
def server_port(self, port):

self._port = port

@cli.switch("-m", cli.Set("TCP", "UDP", case_sensitive = False))
def server_mode(self, mode):

self._mode = mode

def main(self):
print(self._port, self._mode)

$./example.py -p 17
Argument of -p expected to be [1024..65535], not '17':

ValueError('Not in range [1024..65535]',)
$./example.py -m foo
Argument of -m expected to be Set('udp', 'tcp'), not 'foo':

ValueError("Expected one of ['UDP', 'TCP']",)

28 Chapter 4. User Guide

Plumbum Shell Combinators Documentation, Release 1.8.2

Note: The toolkit also provides some other useful validators: ExistingFile (ensures the given argument is an
existing file), ExistingDirectory (ensures the given argument is an existing directory), and NonexistentPath
(ensures the given argument is not an existing path). All of these convert the argument to a local path.

Repeatable Switches

Many times, you would like to allow a certain switch to be given multiple times. For instance, in gcc, you may give
several include directories using -I. By default, switches may only be given once, unless you allow multiple occurrences
by passing list = True to the switch decorator:

class MyApp(cli.Application):
_dirs = []

@cli.switch("-I", str, list = True)
def include_dirs(self, dirs):

self._dirs = dirs

def main(self):
print(self._dirs)

$./example.py -I/foo/bar -I/usr/include
['/foo/bar', '/usr/include']

Note: The switch function will be called only once, and its argument will be a list of items

Mandatory Switches

If a certain switch is required, you can specify this by passing mandatory = True to the switch decorator. The user
will not be able to run the program without specifying a value for this switch.

Dependencies

Many times, the occurrence of a certain switch depends on the occurrence of another, e.g., it may not be possible to
give -x without also giving -y. This constraint can be achieved by specifying the requires keyword argument to the
switch decorator; it is a list of switch names that this switch depends on. If the required switches are missing, the user
will not be able to run the program.

class MyApp(cli.Application):
@cli.switch("--log-to-file", str)
def log_to_file(self, filename):

logger.addHandler(logging.FileHandler(filename))

@cli.switch("--verbose", requires = ["--log-to-file"])
def verbose(self):

logger.setLevel(logging.DEBUG)

4.6. Command-Line Interface (CLI) 29

Plumbum Shell Combinators Documentation, Release 1.8.2

$./example --verbose
Given --verbose, the following are missing ['log-to-file']

Warning: The toolkit invokes the switch functions in the same order in which the switches were given on the
command line. It doesn’t go as far as computing a topological order on the fly, but this will change in the future.

Mutual Exclusion

Just as some switches may depend on others, some switches mutually-exclude others. For instance, it does not make
sense to allow --verbose and --terse. For this purpose, you can set the excludes list in the switch decorator.

class MyApp(cli.Application):
@cli.switch("--log-to-file", str)
def log_to_file(self, filename):

logger.addHandler(logging.FileHandler(filename))

@cli.switch("--verbose", requires = ["--log-to-file"], excludes = ["--terse"])
def verbose(self):

logger.setLevel(logging.DEBUG)

@cli.switch("--terse", requires = ["--log-to-file"], excludes = ["--verbose"])
def terse(self):

logger.setLevel(logging.WARNING)

$./example --log-to-file=log.txt --verbose --terse
Given --verbose, the following are invalid ['--terse']

Grouping

If you wish to group certain switches together in the help message, you can specify group = "Group Name", where
Group Name is any string. When the help message is rendered, all the switches that belong to the same group will be
grouped together. Note that grouping has no other effects on the way switches are processed, but it can help improve
the readability of the help message.

4.6.3 Switch Attributes

Many times it’s desired to simply store a switch’s argument in an attribute, or set a flag if a certain switch is given.
For this purpose, the toolkit provides SwitchAttr, which is data descriptor that stores the argument in an instance
attribute. There are two additional “flavors” of SwitchAttr: Flag (which toggles its default value if the switch is
given) and CountOf (which counts the number of occurrences of the switch):

class MyApp(cli.Application):
log_file = cli.SwitchAttr("--log-file", str, default = None)
enable_logging = cli.Flag("--no-log", default = True)
verbosity_level = cli.CountOf("-v")

def main(self):
print(self.log_file, self.enable_logging, self.verbosity_level)

30 Chapter 4. User Guide

https://docs.python.org/howto/descriptor.html

Plumbum Shell Combinators Documentation, Release 1.8.2

$./example.py -v --log-file=log.txt -v --no-log -vvv
log.txt False 5

Environment Variables

New in version 1.6.

You can also set a SwitchAttr to take an environment variable as an input using the envname parameter. For example:

class MyApp(cli.Application):
log_file = cli.SwitchAttr("--log-file", str, envname="MY_LOG_FILE")

def main(self):
print(self.log_file)

$ MY_LOG_FILE=this.log ./example.py
this.log

Giving the switch on the command line will override the environment variable value.

4.6.4 Main

The main() method takes control once all the command-line switches have been processed. It may take any number of
positional argument; for instance, in cp -r /foo /bar, /foo and /bar are the positional arguments. The number
of positional arguments that the program would accept depends on the signature of the method: if the method takes
5 arguments, 2 of which have default values, then at least 3 positional arguments must be supplied by the user and at
most 5. If the method also takes varargs (*args), the number of arguments that may be given is unbound:

class MyApp(cli.Application):
def main(self, src, dst, mode = "normal"):

print(src, dst, mode)

$./example.py /foo /bar
/foo /bar normal
$./example.py /foo /bar spam
/foo /bar spam
$./example.py /foo
Expected at least 2 positional arguments, got ['/foo']
$./example.py /foo /bar spam bacon
Expected at most 3 positional arguments, got ['/foo', '/bar', 'spam', 'bacon']

Note: The method’s signature is also used to generate the help message, e.g.

Usage: [SWITCHES] src dst [mode='normal']

With varargs:

class MyApp(cli.Application):
def main(self, src, dst, *eggs):

print(src, dst, eggs)

4.6. Command-Line Interface (CLI) 31

Plumbum Shell Combinators Documentation, Release 1.8.2

$./example.py a b c d
a b ('c', 'd')
$./example.py --help
Usage: [SWITCHES] src dst eggs...
Meta-switches:

-h, --help Prints this help message and quits
-v, --version Prints the program's version and quits

Positional argument validation

New in version 1.6.

You can supply positional argument validators using the cli.positional decorator. Simply pass the validators in
the decorator matching the names in the main function. For example:

class MyApp(cli.Application):
@cli.positional(cli.ExistingFile, cli.NonexistentPath)
def main(self, infile, *outfiles):

"infile is a path, outfiles are a list of paths, proper errors are given"

You can also use annotations to specify the validators. For example:

class MyApp(cli.Application):
def main(self, infile : cli.ExistingFile, *outfiles : cli.NonexistentPath):
"Identical to above MyApp"

Annotations are ignored if the positional decorator is present.

Switch Abbreviations

The cli supports switches which have been abbreviated by the user, for example, “–h”, “–he”, or “–hel” would all match
an actual switch name of”–help”, as long as no ambiguity arises from multiple switches that might match the same ab-
breviation. This behavior is disabled by default but can be enabled by defining the class-level attribute ALLOW_ABBREV
to True. For example:

class MyApp(cli.Application):
ALLOW_ABBREV = True
cheese = cli.Flag(["cheese"], help = "cheese, please")
chives = cli.Flag(["chives"], help = "chives, instead")

With the above definition, running the following will raise an error due to ambiguity:

$ python3 example.py --ch # error! matches --cheese and --chives

However, the following two lines are equivalent:

$ python3 example.py --che
$ python3 example.py --cheese

32 Chapter 4. User Guide

Plumbum Shell Combinators Documentation, Release 1.8.2

4.6.5 Sub-commands

New in version 1.1.

A common practice of CLI applications, as they span out and get larger, is to split their logic into multiple, pluggable
sub-applications (or sub-commands). A classic example is version control systems, such as git, where git is the root
command, under which sub-commands such as commit or push are nested. Git even supports alias-ing, which creates
allows users to create custom sub-commands. Plumbum makes writing such applications really easy.

Before we get to the code, it is important to stress out two things:

• Under Plumbum, each sub-command is a full-fledged cli.Application on its own; if you wish, you can execute
it separately, detached from its so-called root application. When an application is run independently, its parent
attribute is None; when it is run as a sub-command, its parent attribute points to its parent application. Likewise,
when an parent application is executed with a sub-command, its nested_command is set to the nested application;
otherwise it’s None.

• Each sub-command is responsible of all arguments that follow it (up to the next sub-command). This allows
applications to process their own switches and positional arguments before the nested application is invoked.
Take, for instance, git --foo=bar spam push origin --tags: the root application, git, is in charge of the
switch --foo and the positional argument spam, and the nested application push is in charge of the arguments
that follow it. In theory, you can nest several sub-applications one into the other; in practice, only a single level
is normally used.

Here is an example of a mock version control system, called geet. We’re going to have a root application Geet, which
has two sub-commands – GeetCommit and GeetPush: these are attached to the root application using the subcommand
decorator

class Geet(cli.Application):
"""The l33t version control"""
VERSION = "1.7.2"

def main(self, *args):
if args:

print(f"Unknown command {args[0]}")
return 1 # error exit code

if not self.nested_command: # will be ``None`` if no sub-command follows
print("No command given")
return 1 # error exit code

@Geet.subcommand("commit") # attach 'geet commit'
class GeetCommit(cli.Application):

"""creates a new commit in the current branch"""

auto_add = cli.Flag("-a", help = "automatically add changed files")
message = cli.SwitchAttr("-m", str, mandatory = True, help = "sets the commit message

→˓")

def main(self):
print("doing the commit...")

@Geet.subcommand("push") # attach 'geet push'
class GeetPush(cli.Application):

"""pushes the current local branch to the remote one"""
def main(self, remote, branch = None):

print("doing the push...")
(continues on next page)

4.6. Command-Line Interface (CLI) 33

https://git-scm.com/

Plumbum Shell Combinators Documentation, Release 1.8.2

(continued from previous page)

if __name__ == "__main__":
Geet.run()

Note:

• Since GeetCommit is a cli.Application on its own right, you may invoke GeetCommit.run() directly
(should that make sense in the context of your application)

• You can also attach sub-commands “imperatively”, using subcommand as a method instead of a decorator: Geet.
subcommand("push", GeetPush)

Here’s an example of running this application:

$ python3 geet.py --help
geet v1.7.2
The l33t version control

Usage: geet.py [SWITCHES] [SUBCOMMAND [SWITCHES]] args...
Meta-switches:

-h, --help Prints this help message and quits
-v, --version Prints the program's version and quits

Subcommands:
commit creates a new commit in the current branch; see

'geet commit --help' for more info
push pushes the current local branch to the remote

one; see 'geet push --help' for more info

$ python3 geet.py commit --help
geet commit v1.7.2
creates a new commit in the current branch

Usage: geet commit [SWITCHES]
Meta-switches:

-h, --help Prints this help message and quits
-v, --version Prints the program's version and quits

Switches:
-a automatically add changed files
-m VALUE:str sets the commit message; required

$ python3 geet.py commit -m "foo"
committing...

34 Chapter 4. User Guide

Plumbum Shell Combinators Documentation, Release 1.8.2

4.6.6 Configuration parser

Another common task of a cli application is provided by a configuration parser, with an INI backend: Config (or
ConfigINI to explicitly request the INI backend). An example of it’s use:

from plumbum import cli

with cli.Config('~/.myapp_rc') as conf:
one = conf.get('one', '1')
two = conf.get('two', '2')

If no configuration file is present, this will create one and each call to .get will set the value with the given default.
The file is created when the context manager exits. If the file is present, it is read and the values from the file are
selected, and nothing is changed. You can also use [] syntax to forcibly set a value, or to get a value with a standard
ValueError if not present. If you want to avoid the context manager, you can use .read and .write as well.

The ini parser will default to using the [DEFAULT] section for values, just like Python’s ConfigParser on which it is
based. If you want to use a different section, simply separate section and heading with a . in the key. conf['section.
item']would place item under [section]. All items stored in an ConfigINI are converted to str, and str is always
returned.

4.6.7 Terminal Utilities

Several terminal utilities are available in plumbum.cli.terminal to assist in making terminal applications.

get_terminal_size(default=(80,25)) allows cross platform access to the terminal size as a tuple (width,
height). Several methods to ask the user for input, such as readline, ask, choose, and prompt are available.

Progress(iterator) allows you to quickly create a progress bar from an iterator. Simply wrap a slow iterator with
this and iterate over it, and it will produce a nice text progress bar based on the user’s screen width, with estimated
time remaining displayed. If you need to create a progress bar for a fast iterator but with a loop containing code, use
Progress.wrap or Progress.range. For example:

for i in Progress.range(10):
time.sleep(1)

If you have something that produces output, but still needs a progress bar, pass has_output=True to force the bar not
to try to erase the old one each time.

A command line image plotter (Image) is provided in plumbum.cli.image. It can plot a PIL-like image im using:

Image().show_pil(im)

The Image constructor can take an optional size (defaults to the current terminal size if None), and a char_ratio,
a height to width measure for your current font. It defaults to a common value of 2.45. If set to None, the ratio is
ignored and the image will no longer be constrained to scale proportionately. To directly plot an image, the show
method takes a filename and a double parameter, which doubles the vertical resolution on some fonts. The show_pil
and show_pil_double methods directly take a PIL-like object. To plot an image from the command line, the module
can be run directly: python3 -m plumbum.cli.image myimage.png.

For the full list of helpers or more information, see the api docs.

4.6. Command-Line Interface (CLI) 35

Plumbum Shell Combinators Documentation, Release 1.8.2

4.6.8 See Also

• filecopy.py example

• geet.py – a runnable example of using sub-commands

• RPyC has changed its bash-based build script to Plumbum CLI. Notice how short and readable it is.

• A blog post describing the philosophy of the CLI module

4.7 TypedEnv

Plumbum provides this utility class to facilitate working with environment variables. Similar to how plumbum.cli.
Application parses command line arguments into pythonic data types, plumbum.typed_env.TypedEnv parses en-
vironment variables:

class MyEnv(TypedEnv):
username = TypedEnv.Str(“USER”, default=’anonymous’) path = TypedEnv.CSV(“PATH”, separator=”:”,
type=local.path) tmp = TypedEnv.Str([“TMP”, “TEMP”]) # support ‘fallback’ var-names is_travis = Type-
dEnv.Bool(“TRAVIS”, default=False) # True is ‘yes/true/1’ (case-insensitive)

We can now instantiate this class to access its attributes:

>>> env = MyEnv()
>>> env.username
'ofer'

>>> env.path
[<LocalPath /home/ofer/bin>,
<LocalPath /usr/local/bin>,
<LocalPath /usr/local/sbin>,
<LocalPath /usr/sbin>,
<LocalPath /usr/bin>,
<LocalPath /sbin>,
<LocalPath /bin>]

>>> env.tmp
Traceback (most recent call last):
[...]

KeyError: 'TMP'

>>> env.is_travis
False

Finally, our TypedEnv object allows us ad-hoc access to the rest of the environment variables, using dot-notation:

>>> env.HOME
'/home/ofer'

We can also update the environment via our TypedEnv object:

>>> env.tmp = "/tmp"
>>> env.tmp
'/tmp'

36 Chapter 4. User Guide

https://github.com/tomerfiliba/plumbum/blob/master/examples/filecopy.py
https://github.com/tomerfiliba/plumbum/blob/master/examples/geet.py
https://rpyc.readthedocs.io/
https://github.com/tomerfiliba/rpyc/blob/c457a28d689df7605838334a437c6b35f9a94618/build.py
http://tomerfiliba.com/blog/Plumbum/

Plumbum Shell Combinators Documentation, Release 1.8.2

>>> from os import environ
>>> env.TMP
'/tmp'

>>> env.is_travis = True
>>> env.TRAVIS
'yes'

>>> env.path = [local.path("/a"), local.path("/b")]
>>> env.PATH
'/a:/b'

4.7.1 TypedEnv as an Abstraction Layer

The TypedEnv class is very useful for separating your application from the actual environment variables. It provides
a layer where parsing and normalizing can take place in a centralized fashion.

For example, you might start with this simple implementation:

class CiBuildEnv(TypedEnv):
job_id = TypedEnv.Str("BUILD_ID")

Later, as the application gets more complicated, you may expand your implementation like so:

class CiBuildEnv(TypedEnv):
is_travis = TypedEnv.Bool("TRAVIS", default=False)
_travis_job_id = TypedEnv.Str("TRAVIS_JOB_ID")
_jenkins_job_id = TypedEnv.Str("BUILD_ID")

@property
def job_id(self):

return self._travis_job_id if self.is_travis else self._jenkins_job_id

4.7.2 TypedEnv vs. local.env

It is important to note that TypedEnv is separate and unrelated to the LocalEnv object that is provided via local.env.

While TypedEnv reads and writes directly to os.environ, local.env is a frozen copy taken at the start of the python
session.

While TypedEnv is focused on parsing environment variables to be used by the current process, local.env’s primary
purpose is to manipulate the environment for child processes that are spawned via plumbum’s local commands.

4.7. TypedEnv 37

Plumbum Shell Combinators Documentation, Release 1.8.2

4.8 Colors

New in version 1.6.

The purpose of the plumbum.colors library is to make adding text styles (such as color) to Python easy and safe.
Color is often a great addition to shell scripts, but not a necessity, and implementing it properly is tricky. It is easy to
end up with an unreadable color stuck on your terminal or with random unreadable symbols around your text. With
the color module, you get quick, safe access to ANSI colors and attributes for your scripts. The module also provides
an API for creating other color schemes for other systems using escapes.

Note: Enabling color

ANSIStyle assumes that only a terminal can display color, and looks at the value of the environment variable TERM.
You can force the use of color globally by setting colors.use_color=4 (The levels 0-4 are available, with 0 being
off). See this note for more options.

4.8.1 Quick start

Colors (red, green, etc.), attributes (bold, underline, etc.) and general styles (warn, info, etc.) are in plumbum.
colors. Combine styles with &, apply to a string with |. So, to output a warning you would do

from plumbum.colors import warn
print(warn | "This is a warning.")

To create a custom style you would do

from plumbum import colors
print(colors.green & colors.bold | "This is green and bold.")

You can use rgb colors, too:

print(colors.rgb(0,255,0) | "This is also green.")

4.8.2 Generating Styles

Styles are accessed through the plumbum.colors object. This has the following available objects:

fg and bg
The foreground and background colors, reset to default with colors.fg.reset or ~colors.fg and
likewise for bg.

bold, dim, underline, italics, reverse, strikeout, and hidden
All the ANSI modifiers are available, as well as their negations, such as ~colors.bold or colors.
bold.reset, etc.

reset
The global reset will restore all properties at once.

do_nothing
Does nothing at all, but otherwise acts like any Style object. It is its own inverse. Useful for cli
properties.

38 Chapter 4. User Guide

Plumbum Shell Combinators Documentation, Release 1.8.2

Styles loaded from a stylesheet dictionary, such as warn and info.
These allow you to set standard styles based on behavior rather than colors, and you can load a new
stylesheet with colors.load_stylesheet(...).

Recreating and loading the default stylesheet would look like this:

>>> default_styles = dict(
... warn="fg red",
... title="fg cyan underline bold",
... fatal="fg red bold",
... highlight="bg yellow",
... info="fg blue",
... success="fg green")

>>> colors.load_stylesheet(default_styles)

The colors.from_ansi(code) method allows you to create a Style from any ansi sequence, even complex or com-
bined ones.

Colors

The colors.fg and colors.bg allow you to access and generate colors. Named foreground colors are available
directly as methods. The first 16 primary colors, black, red, green, yellow, blue, magenta, cyan, etc, as well as
reset, are available. All 256 color names are available, but do not populate directly, so that auto-completion gives
reasonable results. You can also access colors using strings and do colors.fg[string]. Capitalization, underscores,
and spaces (for strings) will be ignored.

You can also access colors numerically with colors.fg[n] for the extended 256 color codes. colors.fg.rgb(r,
g,b) will create a color from an input red, green, and blue values (integers from 0-255). colors.fg.rgb(code) will
allow you to input an html style hex sequence.

Anything you can access from colors.fg can also be accessed directly from colors.

4.8.3 256 Color Support

While this library supports full 24 bit colors through escape sequences, the library has special support for the “full”
256 colorset through numbers, names or HEX html codes. Even if you use 24 bit color, the closest name is dis-
played in the repr. You can access the colors as as colors.fg.Light_Blue, colors.fg.lightblue, colors.
fg[12], colors.fg('Light_Blue'), colors.fg('LightBlue'), or colors.fg('#0000FF'). You can also it-
erate or slice the colors, colors.fg, or colors.bg objects. Slicing even intelligently downgrades to the simple
version of the codes if it is within the first 16 elements. The supported colors are:

If you want to enforce a specific representation, you can use .basic (8 color), .simple (16 color), .full (256 color),
or .true (24 bit color) on a style, and the colors in that Style will conform to the output representation and name of
the best match color. The internal RGB colors are remembered, so this is a non-destructive operation.

Note: Some terminals only support a subset of colors, so keep this in mind when using a larger color set. The standard
Ubuntu terminal handles 24 bit color, the Mac terminal only handles 256 colors, and Colorama on Windows only
handles 8. See this gist for information about support in terminals. If you need to limit the output color, you can set
colors.use_color to 0 (no colors), 1 (8 colors), 2 (16 colors), or 3 (256 colors), or 4 (24-bit colors). This option
will be automatically guessed for you on initialization.

4.8. Colors 39

https://gist.github.com/XVilka/8346728

Plumbum Shell Combinators Documentation, Release 1.8.2

4.8.4 Style manipulations

Safe color manipulations refer to changes that reset themselves at some point. Unsafe manipulations must be manually
reset, and can leave your terminal color in an unreadable state if you forget to reset the color or encounter an exception.
The library is smart and will try to restore the color when Python exits.

Note: If you do get the color unset on a terminal, the following, typed into the command line, will restore it:

$ python3 -m plumbum.colors

This also supports command line access to unsafe color manipulations, such as

$ python3 -m plumbum.colors blue
$ python3 -m plumbum.colors bg red
$ python3 -m plumbum.colors fg 123
$ python3 -m plumbum.colors bg reset
$ python3 -m plumbum.colors underline

You can use any path or number available as a style.

Unsafe Manipulation

Styles have two unsafe operations: Concatenation (with + and a string) and calling .now() without arguments (directly
calling a style without arguments is also a shortcut for .now()). These two operations do not restore normal color to
the terminal by themselves. To protect their use, you can use a context manager around any unsafe operation.

An example of the usage of unsafe colors manipulations inside a context manager:

from plumbum import colors

with colors:
colors.fg.red.now()
print('This is in red') .. raw:: html

<p>This is in red

This is in green and now␣
→˓also underlined!

Underlined and␣
→˓not underlined but still green.

This is completely restored, even if an exception is thrown! </p>

colors.green.now()
print('This is green ' + colors.underline + 'and now also underlined!')
print('Underlined' + colors.underline.reset + ' and not underlined but still red')

print('This is completely restored, even if an exception is thrown!')

Output:

We can use colors instead of colors.fg for foreground colors. If we had used colors.fg as the context manager,
then non-foreground properties, such as colors.underline or colors.bg.yellow, would not have been reset. Each
attribute, as well as fg, bg, and colors all have inverses in the ANSI standard. They are accessed with ~ or .reset,
and can be used to manually make these operations safer, but there is a better way.

40 Chapter 4. User Guide

Plumbum Shell Combinators Documentation, Release 1.8.2

Safe Manipulation

All other operations are safe; they restore the color automatically. The first, and hopefully already obvious one, is
using a specific style rather than a colors or colors.fg object in a with statement. This will set the color (using
sys.stdout by default) to that color, and restore color on leaving.

The second method is to manually wrap a string. This can be done with color | "string" or color["string"].
These produce strings that can be further manipulated or printed.

Finally, you can also print a color to stdout directly using color.print("string"). This has the same syntax as the
print function.

An example of safe manipulations:

colors.fg.yellow('This is yellow', end='')
print(' And this is normal again.')
with colors.red:

print('Red color!')
with colors.bold:

print("This is red and bold.")
print("Not bold, but still red.")

print("Not red color or bold.")
print(colors.magenta & colors.bold | "This is bold and colorful!", "And this is not.")

Output:

Style Combinations

You can combine styles with & and they will create a new combined style. Colors will not be “summed” or otherwise
combined; the rightmost color will be used (this matches the expected effect of applying the styles individually to the
strings). However, combined styles are intelligent and know how to reset just the properties that they contain. As you
have seen in the example above, the combined style (colors.magenta & colors.bold) can be used in any way a
normal style can.

4.8.5 New color systems

The library was written primarily for ANSI color sequences, but can also easily be subclassed to create new color
systems. See Colorlib design for information on how the system works. An HTML version is available as plumbum.
colorlib.htmlcolors.

4.8.6 See Also

• colored Another library with 256 color support

• colorful A fairly new library with a similar feature set

• colorama A library that supports colored text on Windows,
can be combined with Plumbum.colors (if you force use_color, doesn’t support all extended colors)

• rich A very powerful modern library for all sorts of styling.

4.8. Colors 41

https://pypi.python.org/pypi/colored
https://github.com/timofurrer/colorful
https://pypi.python.org/pypi/colorama
https://rich.readthedocs.io

Plumbum Shell Combinators Documentation, Release 1.8.2

4.9 Change Log

4.9.1 1.8.2

• Fix author metadata on PyPI package and add static check (#648)

• Add testing for Python 3.12 beta 1 (#650)

• Use Ruff for linting (#643)

• Paths: Add type hinting for Path (#646)

4.9.2 1.8.1

• Accept path-like objects (#627)

• Move the build backend to hatchling and hatch-vcs. Users should be unaffected. Third-party packaging may
need to adapt to the new build system. (#607)

4.9.3 1.8.0

• Drop Python 2.7 and 3.5 support, add 3.11 support (#573)

• Lots of extended checks and fixes for problems exposed.

• Color: support NO_COLOR/FORCE_COLOR (#575)

• Commands: New iter_lines buffer_size parameter (#582)

• Commands: cache remote commands (#583)

• SSH: Support reverse tunnels and dynamically allocated ports (#608)

• CLI: add Set(..., all_markers={"*", "all"}) and fix support for other separators (#619)

• CLI: support future annotations (#621)

• Color: fix the ABC (#617)

• Exceptions: fix for exception pickling (#586)

• Fix for StdinDataRedirection and modifiers (#605)

4.9.4 1.7.2

• Commands: avoid issue mktemp issue on some BSD variants (#571)

• Better specification of dependency on pywin32 (#568)

• Some DeprecationWarnings changed to FutureWarnings (#567)

42 Chapter 4. User Guide

https://github.com/tomerfiliba/plumbum/pull/648
https://github.com/tomerfiliba/plumbum/pull/650
https://github.com/tomerfiliba/plumbum/pull/643
https://github.com/tomerfiliba/plumbum/pull/646
https://github.com/tomerfiliba/plumbum/pull/627
https://github.com/tomerfiliba/plumbum/pull/607
https://github.com/tomerfiliba/plumbum/pull/573
https://github.com/tomerfiliba/plumbum/pull/575
https://github.com/tomerfiliba/plumbum/pull/582
https://github.com/tomerfiliba/plumbum/pull/583
https://github.com/tomerfiliba/plumbum/pull/608
https://github.com/tomerfiliba/plumbum/pull/619
https://github.com/tomerfiliba/plumbum/pull/621
https://github.com/tomerfiliba/plumbum/pull/617
https://github.com/tomerfiliba/plumbum/pull/586
https://github.com/tomerfiliba/plumbum/pull/605
https://github.com/tomerfiliba/plumbum/pull/571
https://github.com/tomerfiliba/plumbum/pull/568
https://github.com/tomerfiliba/plumbum/pull/567

Plumbum Shell Combinators Documentation, Release 1.8.2

4.9.5 1.7.1

• Paths: glob with local paths no longer expands the existing path too (#552)

• Paramiko: support reverse tunnels (#562)

• SSHMachine: support forwarding Unix sockets in .tunnel() (#550)

• CLI: Support COLOR_GROUP_TITLES (#553)

• Fix a deprecated in Python 3.10 warning (#563)

• Extended testing and checking on Python 3.10 and various PyPy versions. Nox is supported for easier new-user
development.

4.9.6 1.7.0

• Commands: support .with_cwd() (#513)

• Commands: make iter_lines deal with decoding errors during iteration (#525)

• Commands: fix handling of env-vars passed to plumbum BoundEnvCommands (#513)

• Commands: fix support for win32 in iter_lines (#500)

• Paths: fix incorrect __getitem__ method in Path (#506)

• Paths: Remote path stat had odd OSError (#505)

• Paths: Fix RemotePath.copy() (#527)

• Paths: missing __fspath__ added (#498)

• SSH: better error reporting on SshSession error (#515)

• Internal: redesigned CI, major cleanup to setuptools distribution, Black formatting, style checking throughout.

4.9.7 1.6.9

• Last version to support Python 2.6; added python_requires for future versions (#507)

• Paths: Fix bug with subscription operations (#498), (#506)

• Paths: Fix resolve (#492)

• Commands: Fix resolve (#491)

• Commands: Add context manager on popen (#495)

• Several smaller fixes (#500), (#505)

4.9.8 1.6.8

• Exceptions: Changed ProcessExecutionError’s formatting to be more user-friendly (#456)

• Commands: support for per-line timeout with iter_lines (#454)

• Commands: support for piping stdout/stderr to a logger (#454)

• Paths: support composing paths using subscription operations (#455)

• CLI: Improved ‘Set’ validator to allow non-string types, and CSV params (#452)

4.9. Change Log 43

https://github.com/tomerfiliba/plumbum/pull/552
https://github.com/tomerfiliba/plumbum/pull/562
https://github.com/tomerfiliba/plumbum/pull/550
https://github.com/tomerfiliba/plumbum/pull/553
https://github.com/tomerfiliba/plumbum/pull/563
https://github.com/tomerfiliba/plumbum/pull/513
https://github.com/tomerfiliba/plumbum/pull/525
https://github.com/tomerfiliba/plumbum/pull/513
https://github.com/tomerfiliba/plumbum/pull/500
https://github.com/tomerfiliba/plumbum/pull/506
https://github.com/tomerfiliba/plumbum/pull/505
https://github.com/tomerfiliba/plumbum/pull/527
https://github.com/tomerfiliba/plumbum/pull/498
https://github.com/tomerfiliba/plumbum/pull/515
https://github.com/tomerfiliba/plumbum/pull/507
https://github.com/tomerfiliba/plumbum/pull/498
https://github.com/tomerfiliba/plumbum/pull/506
https://github.com/tomerfiliba/plumbum/pull/492
https://github.com/tomerfiliba/plumbum/pull/491
https://github.com/tomerfiliba/plumbum/pull/495
https://github.com/tomerfiliba/plumbum/pull/500
https://github.com/tomerfiliba/plumbum/pull/505
https://github.com/tomerfiliba/plumbum/pull/456
https://github.com/tomerfiliba/plumbum/pull/454
https://github.com/tomerfiliba/plumbum/pull/454
https://github.com/tomerfiliba/plumbum/pull/455
https://github.com/tomerfiliba/plumbum/pull/452

Plumbum Shell Combinators Documentation, Release 1.8.2

• TypedEnv: Facility for modeling environment-variables into python data types (#451)

• Commands: execute local/remote commands via a magic .cmd attribute (#450)

4.9.9 1.6.7

• Commands: Added run_* methods as an alternative to modifiers (#386)

• CLI: Added support for ALLOW_ABREV (#401)

• CLI: Added DESCRIPTION_MORE, preserves spacing (#378)

• Color: Avoid throwing error in atexit in special cases (like pytest) (#393)

• Including Python 3.7 in testing matrix.

• Smaller bugfixes and other testing improvements.

4.9.10 1.6.6

• Critical Bugfix: High-speed (English) translations could break the CLI module (#371)

• Small improvement to wheels packaging

4.9.11 1.6.5

• Critical Bugfix: Syntax error in image script could break pip installs (#366)

• CLI: Regression fix: English apps now load as fast as in 1.6.3 (#364)

• CLI: Missing colon restored in group names

• Regression fix: Restored non-setuptools installs (but really, why would you not have setuptools?) (#367)

4.9.12 1.6.4

• CLI: Support for localization (#339), with:

– Russian by Pavel Pletenev (#339)

– Dutch by Roel Aaij (#351)

– French by Joel Closier (#352)

– German by Christoph Hasse (#353)

– Pulls with more languages welcome!

• CLI: Support for MakeDirectory (#339)

• Commands: Fixed unicode input/output on Python 2 (#341)

• Paths: More updates for pathlib compatibility (#325)

• Terminal: Changed prompt()’s default value for type parameter from int to str to match existing docs (#327)

• Remote: Support ~ in PATH for a remote (#293)

• Remote: Fixes for globbing with spaces in filename on a remote server (#322)

• Color: Fixes to image plots, better separation (#324)

44 Chapter 4. User Guide

https://github.com/tomerfiliba/plumbum/pull/451
https://github.com/tomerfiliba/plumbum/pull/450
https://github.com/tomerfiliba/plumbum/pull/386
https://github.com/tomerfiliba/plumbum/pull/401
https://github.com/tomerfiliba/plumbum/pull/378
https://github.com/tomerfiliba/plumbum/pull/393
https://github.com/tomerfiliba/plumbum/issues/371
https://github.com/tomerfiliba/plumbum/pull/366
https://github.com/tomerfiliba/plumbum/issues/364
https://github.com/tomerfiliba/plumbum/pull/367
https://github.com/tomerfiliba/plumbum/pull/339
https://github.com/tomerfiliba/plumbum/pull/339
https://github.com/tomerfiliba/plumbum/pull/351
https://github.com/tomerfiliba/plumbum/pull/352
https://github.com/tomerfiliba/plumbum/pull/353
https://github.com/tomerfiliba/plumbum/pull/339
https://github.com/tomerfiliba/plumbum/pull/341
https://github.com/tomerfiliba/plumbum/pull/325
https://github.com/tomerfiliba/plumbum/issues/327
https://github.com/tomerfiliba/plumbum/issues/293
https://github.com/tomerfiliba/plumbum/issues/322
https://github.com/tomerfiliba/plumbum/pull/324

Plumbum Shell Combinators Documentation, Release 1.8.2

• Python 3.3 has been removed from Travis and Appveyor.

• Several bugs fixed

4.9.13 1.6.3

• Python 3.6 is now supported, critical bug fixed (#302)

• Commands: Better handling of return codes for pipelines (#288)

• Paths: Return split support (regression) (#286) - also supports dummy args for better str compatibility

• Paths: Added support for Python 3.6 path protocol

• Paths: Support Python’s in syntax

• CLI: Added Config parser (provisional) (#304)

• Color: image plots with python -m plumbum.cli.image (#304)

• SSH: No longer hangs for timeout seconds on failure (#306)

• Test improvements, especially on non-linux systems

4.9.14 1.6.2

• CLI: Progress now has a clear keyword that hides the bar on completion

• CLI: Progress without clear now starts on next line without having to manually add \n.

• Commands: modifiers now accept a timeout parameter (#281)

• Commands: BG modifier now allows stdout/stderr redirection (to screen, for example) (#258)

• Commands: Modifiers no longer crash on repr (see #262)

• Remote: nohup works again, typo fixed (#261)

• Added better support for SunOS and other OS’s. (#260)

• Colors: Context manager flushes stream now, provides more consistent results

• Other smaller bugfixes, better support for Python 3.6+

4.9.15 1.6.1

• CLI: Application subclasses can now be run directly, instead of calling .run(), to facilitate using as entry
points (#237)

• CLI: gui_open added to allow easy opening of paths in default gui editor (#239)

• CLI: More control over help message (#233)

• Remote: cwd is now stashed to reduce network usage (similar to Plumbum <1.6 behavior), and absolute paths
are faster, (#238)

• Bugfix: Pipelined return codes now give correct attribution (#243)

• Bugfix: Progress works on Python 2.6 (#230)

• Bugfix: Colors now work with more terminals (#231)

• Bugfix: Getting an executable no longer returns a directory (#234)

4.9. Change Log 45

https://github.com/tomerfiliba/plumbum/issues/302
https://github.com/tomerfiliba/plumbum/pull/288
https://github.com/tomerfiliba/plumbum/issues/286
https://github.com/tomerfiliba/plumbum/pull/304
https://github.com/tomerfiliba/plumbum/pull/304
https://github.com/tomerfiliba/plumbum/issues/306
https://github.com/tomerfiliba/plumbum/pull/281
https://github.com/tomerfiliba/plumbum/pull/258
https://github.com/tomerfiliba/plumbum/issues/262
https://github.com/tomerfiliba/plumbum/issues/261
https://github.com/tomerfiliba/plumbum/pull/260
https://github.com/tomerfiliba/plumbum/pull/237
https://github.com/tomerfiliba/plumbum/pull/239
https://github.com/tomerfiliba/plumbum/pull/233
https://github.com/tomerfiliba/plumbum/pull/238
https://github.com/tomerfiliba/plumbum/pull/243
https://github.com/tomerfiliba/plumbum/issues/230
https://github.com/tomerfiliba/plumbum/issues/231
https://ithub.com/tomerfiliba/plumbum/issues/234

Plumbum Shell Combinators Documentation, Release 1.8.2

• Bugfix: Iterdir now works on Python <3.5

• Testing is now expanded and fully written in Pytest, with coverage reporting.

• Added support for Conda (as of 1.6.2, use the -c conda-forge channel)

4.9.16 1.6.0

• Added support for Python 3.5, PyPy, and better Windows and Mac support, with CI testing (#218, #217, #226)

• Colors: Added colors module, support for colors added to cli (#213)

• Machines: Added .get() method for checking several commands. (#205)

• Machines: local.cwd now is the current directory even if you change the directory with non-Plumbum methods
(fixes unexpected behavior). (#207)

• SSHMachine: Better error message for SSH (#211)

• SSHMachine: Support for FreeBSD remote (#220)

• Paths: Now a subclass of str, can be opened directly (#228)

• Paths: Improved pathlib compatibility with several additions and renames (#223)

• Paths: Added globbing multiple patterns at once (#221)

• Commands: added NOHUP modifier (#221)

• CLI: added positional argument validation (#225)

• CLI: added envname, which allows you specify an environment variable for a SwitchAttr (#216)

• CLI terminal: added Progress, a command line progress bar for iterators and ranges (#214)

• Continued to clean out Python 2.5 hacks

4.9.17 1.5.0

• Removed support for Python 2.5. (Travis CI does not support it anymore)

• CLI: add invoke, which allows you to programmatically run applications (#149)

• CLI: add --help-all and various cosmetic fixes: (#125), (#126), (#127)

• CLI: add root_app property (#141)

• Machines: getattr now raises AttributeError instead of CommandNotFound (#135)

• Paramiko: keep_alive support (#186)

• Paramiko: does not support piping explicitly now (#160)

• Parmaiko: Added pure SFTP backend, gives STFP v4+ support (#188)

• Paths: bugfix to cwd interaction with Path (#142)

• Paths: read/write now accept an optional encoding parameter (#148)

• Paths: Suffix support similar to the Python 3.4 standard library pathlib (#198)

• Commands: renamed setenv to with_env (#143)

• Commands: pipelines will now fail with ProcessExecutionError if the source process fails (#145)

• Commands: added TF and RETCODE modifiers (#202)

46 Chapter 4. User Guide

https://github.com/tomerfiliba/plumbum/pull/218
https://github.com/tomerfiliba/plumbum/pull/217
https://github.com/tomerfiliba/plumbum/pull/226
https://github.com/tomerfiliba/plumbum/pull/213
https://github.com/tomerfiliba/plumbum/pull/205
https://github.com/tomerfiliba/plumbum/pull/207
https://github.com/tomerfiliba/plumbum/pull/211
https://github.com/tomerfiliba/plumbum/pull/220
https://github.com/tomerfiliba/plumbum/pull/228
https://github.com/tomerfiliba/plumbum/pull/223
https://github.com/tomerfiliba/plumbum/pull/221
https://github.com/tomerfiliba/plumbum/pull/221
https://github.com/tomerfiliba/plumbum/pull/225
https://github.com/tomerfiliba/plumbum/pull/216
https://github.com/tomerfiliba/plumbum/pull/214
https://github.com/tomerfiliba/plumbum/pull/149
https://github.com/tomerfiliba/plumbum/pull/125
https://github.com/tomerfiliba/plumbum/pull/126
https://github.com/tomerfiliba/plumbum/pull/127
https://github.com/tomerfiliba/plumbum/pull/141
https://github.com/tomerfiliba/plumbum/pull/135
https://github.com/tomerfiliba/plumbum/pull/186
https://github.com/tomerfiliba/plumbum/pull/160
https://github.com/tomerfiliba/plumbum/pull/188
https://github.com/tomerfiliba/plumbum/pull/142
https://github.com/tomerfiliba/plumbum/pull/148
https://github.com/tomerfiliba/plumbum/pull/198
https://github.com/tomerfiliba/plumbum/pull/143
https://github.com/tomerfiliba/plumbum/pull/145
https://github.com/tomerfiliba/plumbum/pull/202

Plumbum Shell Combinators Documentation, Release 1.8.2

• Experimental concurrent machine support in experimental/parallel.py

• Several minor bug fixes, including Windows and Python 3 fixes (#199, #195)

4.9.18 1.4.2

• Paramiko now supports Python 3, enabled support in Plumbum

• Terminal: added prompt(), bugfix to get_terminal_size() (#113)

• CLI: added cleanup(), which is called after main() returns

• CLI: bugfix to CountOf (#118)

• Commands: Add a TEE modifier (#117)

• Remote machines: bugfix to which, bugfix to remote environment variables (#122)

• Path: read()/write() now operate on bytes

4.9.19 1.4.1

• Force /bin/sh to be the shell in SshMachine.session() (#111)

• Added islink() and unlink() to path objects (#100, #103)

• Added access to path objects

• Faster which implementation (#98)

• Several minor bug fixes

4.9.20 1.4

• Moved atomic and unixutils into the new fs package (file-system related utilities)

• Dropped plumbum.utils legacy shortcut in favor of plumbum.path.utils

• Bugfix: the left-hand-side process of a pipe wasn’t waited on, leading to zombies (#89)

• Added RelativePath (the result of Path.relative_to)

• Fixed more text alignment issues in cli.Application.help()

• Introduced ask() and choose to cli.terminal

• Bugfix: Path comparison operators were wrong

• Added connection timeout to RemoteMachine

4.9.21 1.3

• Command.popen: a new argument, new_session may be passed to Command.popen, which runs the given in a
new session (setsid on POSIX, CREATE_NEW_PROCESS_GROUP on Windows)

• Command.Popen: args can now also be a list (previously, it was required to be a tuple). See

• local.daemonize: run commands as full daemons (double-fork and setsid) on POSIX systems, or detached
from their controlling console and parent (on Windows).

• list_processes: return a list of running process (local/remote machines)

4.9. Change Log 47

https://github.com/tomerfiliba/plumbum/pull/199
https://github.com/tomerfiliba/plumbum/pull/195
https://github.com/tomerfiliba/plumbum/pull/113
https://github.com/tomerfiliba/plumbum/pull/118
https://github.com/tomerfiliba/plumbum/pull/117
https://github.com/tomerfiliba/plumbum/pull/122
https://github.com/tomerfiliba/plumbum/pull/111
https://github.com/tomerfiliba/plumbum/pull/100
https://github.com/tomerfiliba/plumbum/pull/103
https://github.com/tomerfiliba/plumbum/pull/98
https://github.com/tomerfiliba/plumbum/pull/89

Plumbum Shell Combinators Documentation, Release 1.8.2

• SshMachine.nohup: “daemonize” remote commands via nohup (not really a daemon, but good enough)

• atomic: Atomic file operations (AtomicFile, AtomicCounterFile and PidFile)

• copy and move: the src argument can now be a list of files to move, e.g., copy(["foo", "bar"], "/usr/
bin")

• list local and remote processes

• cli: better handling of text wrapping in the generated help message

• cli: add a default main() method that checks for unknown subcommands

• terminal: initial commit (get_terminal_size)

• packaging: the package was split into subpackages; it grew too big for a flat namespace. imports are not expected
to be broken by this change

• SshMachine: added password parameter, which relies on sshpass to feed the password to ssh. This is a security
risk, but it’s occasionally necessary. Use this with caution!

• Commands now have a machine attribute that points to the machine they run on

• Commands gained setenv, which creates a command with a bound environment

• Remote path: several fixes to stat (StatRes)

• cli: add lazily-loaded subcommands (e.g., MainApp.subcommand("foo", "my.package.foo.FooApp")),
which are imported on demand

• Paths: added relative_to and split, which (respectively) computes the difference between two paths and splits
paths into lists of nodes

• cli: Predicate became a class decorator (it exists solely for pretty-printing anyway)

• PuttyMachine: bugfix

4.9.22 1.2

• Path: added chmod

• Path: added link and symlink

• Path: walk() now applies filter recursively (#64)

• Commands: added Append redirect

• Commands: fix _subprocess issue (#59)

• Commands: add __file__ to module hack (#66)

• Paramiko: add ‘username’ and ‘password’

• Paramiko: add ‘timeout’ and ‘look_for_keys’

• Python 3: fix #56 and #55

48 Chapter 4. User Guide

http://linux.die.net/man/1/sshpass
https://github.com/tomerfiliba/plumbum/blob/c224058bcefaf5c00fe2295389887c7ebc9d5132/tests/test_local.py#L53
https://github.com/tomerfiliba/plumbum/pull/85
https://github.com/tomerfiliba/plumbum/pull/49
https://github.com/tomerfiliba/plumbum/issues/65
https://github.com/tomerfiliba/plumbum/issues/64
https://github.com/tomerfiliba/plumbum/pull/54
https://github.com/tomerfiliba/plumbum/issues/59
https://github.com/tomerfiliba/plumbum/issues/66
https://github.com/tomerfiliba/plumbum/pull/52
https://github.com/tomerfiliba/plumbum/pull/67
https://github.com/tomerfiliba/plumbum/issues/56
https://github.com/tomerfiliba/plumbum/pull/55

Plumbum Shell Combinators Documentation, Release 1.8.2

4.9.23 1.1

• Paramiko integration (#10)

• CLI: now with built-in support for sub-commands. See also: #43

• The “import hack” has moved to the package’s __init__.py, to make it importable directly (#45)

• Paths now support chmod (on POSIX platform) (#49)

• The argument name of a SwitchAttr can now be given to it (defaults to VALUE) (#46)

4.9.24 1.0.1

• Windows: path are no longer converted to lower-case, but __eq__ and __hash__ operate on the lower-cased
result (#38)

• Properly handle empty strings in the argument list (#41)

• Relaxed type-checking of LocalPath and RemotePath (#35)

• Added PuttyMachine for Windows users that relies on plink and pscp (instead of ssh and scp) (#37)

4.9.25 1.0.0

• Rename cli.CountingAttr to cli.CountOf

• Moved to Travis continuous integration

• Added unixutils

• Added chown and uid/gid

• Lots of fixes and updates to the doc

• Full list of issues

4.9.26 0.9.0

Initial release

4.10 Quick reference guide

This is a cheatsheet for common tasks in Plumbum.

4.10.1 CLI

4.10. Quick reference guide 49

http://pypi.python.org/pypi/paramiko/1.8.0
https://github.com/tomerfiliba/plumbum/issues/10
https://plumbum.readthedocs.io/en/latest/cli.html#sub-commands
https://github.com/tomerfiliba/plumbum/issues/43
https://github.com/tomerfiliba/plumbum/issues/45
https://github.com/tomerfiliba/plumbum/pull/49
https://github.com/tomerfiliba/plumbum/pull/46
https://github.com/tomerfiliba/plumbum/issues/38
https://github.com/tomerfiliba/plumbum/issues/41
https://github.com/tomerfiliba/plumbum/issues/35
https://github.com/tomerfiliba/plumbum/issues/37
http://travis-ci.org/#!/tomerfiliba/plumbum
https://github.com/tomerfiliba/plumbum/issues?labels=V1.0&page=1&state=closed

Plumbum Shell Combinators Documentation, Release 1.8.2

Optional arguments

Utility Usage
Flag True or False descriptor
SwitchAttr A value as a descriptor
CountOf Counting version of Flag
@switch A function that runs when passed
@autoswitch A switch that gets its name from the function decorated
@validator A positional argument validator on main (or use Py3 attributes)

Validators

Anything that produces a ValueError or TypeError, is applied to argument. Some special ones included:

Validator Usage
Range A number in some range
Set A choice in a set
ExistingFile A file (converts to Path)
ExistingDirectory A directory
NonexistentPath Not a file or directory

Common options

Option Used in Usage
First argument Non-auto The name, or list of names, includes dash(es)
Second argument All The validator
docstring switch, Application The help message
help= All The help message
list=True switch Allow multiple times (passed as list)
requires= All A list of optional arguments to require
excludes= All A list of optional arguments to exclude
group= All The name of a group
default= All The default if not given
envname= SwitchAttr The name of an environment variable to check
mandatory=True Switches Require this argument to be passed

50 Chapter 4. User Guide

Plumbum Shell Combinators Documentation, Release 1.8.2

Special member variables

4.10.2 Paths

Idiom Description
local.cwd Common way to make paths
/ Construct Composition of parts
// Construct Grep for files
Sorting Alphabetical
Iteration By parts
To str Canonical full path
Subtraction Relative path
in Check for file in folder

Property Description Compare to Pathlib
.name The file name X
.basename DEPRECATED
.stem Name without extension X
.dirname Directory name
.root The file tree root X
.drive Drive letter (Windows) X
.suffix The suffix X
.suffixes A list of suffixes X
.uid User ID
.gid Group ID
.parts Tuple of split X
.parents The ancestors of the path X
.parent The ancestor of the path X

4.10. Quick reference guide 51

Plumbum Shell Combinators Documentation, Release 1.8.2

Method Description Compare to Pathlib
.up(count = 1) Go up count directories
.walk(filter=*, dir_filter=*) Traverse directories
.as_uri(scheme=None) Universal Resource ID X
.join(part, ...) Put together paths (/) .joinpath
.list() Files in directory (shortcut)
.iterdir() Fast iterator over dir X
.is_dir() If path is dir X
.isdir() DEPRECATED
.is_file() If is file X
.isfile() DEPRECATED
.is_symlink() If is symlink X
.islink() DEPRECATED
.exists() If file exists X
.stat() Return OS stats X
.with_name(name) Replace filename X
.with_suffix(suffix, depth=1) Replace suffix X (no depth)
.preferred_suffix(suffix) Replace suffix if no suffix
.glob(pattern) Search for pattern X
.split() Split into directories .parts
.relative_to(source) Relative path (-) X
.resolve(strict=False) Does nothing X
.access(mode = 0) Check access permissions

Method (changes files) Description Compare to Pathlib
.link(dst) Make a hard link
.symlink(dst) Make a symlink .symlink_to
.unlink() Unlink a file (delete) X
.delete() Delete file .unlink
.move(dst) Move file
.rename(newname) Change the file name X
.copy(dst, override=False) Copy a file
.mkdir() Make a directory X (+ more args)
.open(mode="r") Open a file for reading X (+ more args)
.read(encoding=None) Read a file to text .read_text
.write(data, encoding=None) Write to a file .write_text
.touch() Touch a file X (+ more args)
.chown(owner=None, group=None, recursive=None) Change owner
.chmod(mode) Change permissions X

52 Chapter 4. User Guide

Plumbum Shell Combinators Documentation, Release 1.8.2

4.10.3 Colors

You pick colors from fg or bg, also can reset

Main colors: black red green yellow blue magenta cyan white

Default styles: warn title fatal highlight info success

Attrs: bold dim underline italics reverse strikeout hidden

4.10. Quick reference guide 53

Plumbum Shell Combinators Documentation, Release 1.8.2

54 Chapter 4. User Guide

CHAPTER

FIVE

API REFERENCE

The API reference (generated from the docstrings within the library) covers all of the exposed APIs of the library. Note
that some “advanced” features and some function parameters are missing from the guide, so you might want to consult
with the API reference in these cases.

5.1 Package plumbum.cli

exception plumbum.cli.application.ShowHelp

exception plumbum.cli.application.ShowHelpAll

exception plumbum.cli.application.ShowVersion

class plumbum.cli.application.Application(executable=None)
The base class for CLI applications; your “entry point” class should derive from it, define the relevant switch
functions and attributes, and the main() function. The class defines two overridable “meta switches” for version
(-v, --version) help (-h, --help), and help-all (--help-all).

The signature of the main function matters: any positional arguments (e.g., non-switch arguments) given on the
command line are passed to the main() function; if you wish to allow unlimited number of positional arguments,
use varargs (*args). The names of the arguments will be shown in the help message.

The classmethod run serves as the entry point of the class. It parses the command-line arguments, invokes switch
functions and enters main. You should not override this method.

Usage:

class FileCopier(Application):
stat = Flag("p", "copy stat info as well")

def main(self, src, dst):
if self.stat:

shutil.copy2(src, dst)
else:

shutil.copy(src, dst)

if __name__ == "__main__":
FileCopier.run()

There are several class-level attributes you may set:

• PROGNAME - the name of the program; if None (the default), it is set to the name of the executable (argv[0]);
can be in color. If only a color, will be applied to the name.

55

Plumbum Shell Combinators Documentation, Release 1.8.2

• VERSION - the program’s version (defaults to 1.0, can be in color)

• DESCRIPTION - a short description of your program (shown in help). If not set, the class’ __doc__ will be
used. Can be in color.

• DESCRIPTION_MORE - a detailed description of your program (shown in help). The text will be printed
by paragraphs (specified by empty lines between them). The indentation of each paragraph will be the
indentation of its first line. List items are identified by their first non-whitespace character being one of ‘-’,
‘*’, and ‘/’; so that they are not combined with preceding paragraphs. Bullet ‘/’ is “invisible”, meaning that
the bullet itself will not be printed to the output.

• USAGE - the usage line (shown in help).

• COLOR_USAGE_TITLE - The color of the usage line’s header.

• COLOR_USAGE - The color of the usage line.

• COLOR_GROUPS - A dictionary that sets colors for the groups, like Meta-switches, Switches, and Subcom-
mands.

• COLOR_GROUP_TITLES - A dictionary that sets colors for the group titles. If the dictionary is empty, it
defaults to COLOR_GROUPS.

• SUBCOMMAND_HELPMSG - Controls the printing of extra “see subcommand -h” help message. Default is a
message, set to False to remove.

• ALLOW_ABBREV - Controls whether partial switch names are supported, for example ‘–ver’ will match ‘–ver-
bose’. Default is False for backward consistency with previous plumbum releases. Note that ambiguous
abbreviations will not match, for example if –foothis and –foothat are defined, then –foo will not match.

A note on sub-commands: when an application is the root, its parent attribute is set to None. When it is used as
a nested-command, parentwill point to its direct ancestor. Likewise, when an application is invoked with a sub-
command, its nested_command attribute will hold the chosen sub-application and its command-line arguments
(a tuple); otherwise, it will be set to None

classmethod unbind_switches(*switch_names)
Unbinds the given switch names from this application. For example

class MyApp(cli.Application):
pass

MyApp.unbind_switches("--version")

classmethod subcommand(name, subapp=None)
Registers the given sub-application as a sub-command of this one. This method can be used both as a
decorator and as a normal classmethod:

@MyApp.subcommand("foo")
class FooApp(cli.Application):

pass

Or

MyApp.subcommand("foo", FooApp)

New in version 1.1.

New in version 1.3: The sub-command can also be a string, in which case it is treated as a fully-qualified
class name and is imported on demand. For example,

MyApp.subcommand(“foo”, “fully.qualified.package.FooApp”)

56 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

classmethod autocomplete(argv)
This is supplied to make subclassing and testing argument completion methods easier

classmethod run(argv=None, exit=True)
Runs the application, taking the arguments from sys.argv by default if nothing is passed. If exit is
True (the default), the function will exit with the appropriate return code; otherwise it will return a tuple of
(inst, retcode), where inst is the application instance created internally by this function and retcode
is the exit code of the application.

Note: Setting exit to False is intendend for testing/debugging purposes only – do not override it in other
situations.

classmethod invoke(*args, **switches)
Invoke this application programmatically (as a function), in the same way run() would. There are two key
differences: the return value of main() is not converted to an integer (returned as-is), and exceptions are
not swallowed either.

Parameters

• args – any positional arguments for main()

• switches – command-line switches are passed as keyword arguments, e.g., foo=5 for
--foo=5

main(*args)
Implement me (no need to call super)

cleanup(retcode)
Called after main() and all sub-applications have executed, to perform any necessary cleanup.

Parameters
retcode – the return code of main()

helpall()

Prints help messages of all sub-commands and quits

help()

Prints this help message and quits

version()

Prints the program’s version and quits

exception plumbum.cli.switches.SwitchError

A general switch related-error (base class of all other switch errors)

exception plumbum.cli.switches.PositionalArgumentsError

Raised when an invalid number of positional arguments has been given

exception plumbum.cli.switches.SwitchCombinationError

Raised when an invalid combination of switches has been given

exception plumbum.cli.switches.UnknownSwitch

Raised when an unrecognized switch has been given

exception plumbum.cli.switches.MissingArgument

Raised when a switch requires an argument, but one was not provided

5.1. Package plumbum.cli 57

Plumbum Shell Combinators Documentation, Release 1.8.2

exception plumbum.cli.switches.MissingMandatorySwitch

Raised when a mandatory switch has not been given

exception plumbum.cli.switches.WrongArgumentType

Raised when a switch expected an argument of some type, but an argument of a wrong type has been given

exception plumbum.cli.switches.SubcommandError

Raised when there’s something wrong with sub-commands

plumbum.cli.switches.switch(names, argtype=None, argname=None, list=False, mandatory=False,
requires=(), excludes=(), help=None, overridable=False, group='Switches',
envname=None)

A decorator that exposes functions as command-line switches. Usage:

class MyApp(Application):
@switch(["-l", "--log-to-file"], argtype = str)
def log_to_file(self, filename):

handler = logging.FileHandler(filename)
logger.addHandler(handler)

@switch(["--verbose"], excludes=["--terse"], requires=["--log-to-file"])
def set_debug(self):

logger.setLevel(logging.DEBUG)

@switch(["--terse"], excludes=["--verbose"], requires=["--log-to-file"])
def set_terse(self):

logger.setLevel(logging.WARNING)

Parameters

• names – The name(s) under which the function is reachable; it can be a string or a list of
string, but at least one name is required. There’s no need to prefix the name with - or --
(this is added automatically), but it can be used for clarity. Single-letter names are prefixed
by -, while longer names are prefixed by --

• envname – Name of environment variable to extract value from, as alternative to argv

• argtype – If this function takes an argument, you need to specify its type. The default is
None, which means the function takes no argument. The type is more of a “validator” than
a real type; it can be any callable object that raises a TypeError if the argument is invalid,
or returns an appropriate value on success. If the user provides an invalid value, plumbum.
cli.WrongArgumentType()

• argname – The name of the argument; if None, the name will be inferred from the function’s
signature

• list – Whether or not this switch can be repeated (e.g. gcc -I/lib -I/usr/lib). If
False, only a single occurrence of the switch is allowed; if True, it may be repeated indef-
initely. The occurrences are collected into a list, so the function is only called once with the
collections. For instance, for gcc -I/lib -I/usr/lib, the function will be called with
["/lib", "/usr/lib"].

• mandatory – Whether or not this switch is mandatory; if a mandatory switch is not given,
MissingMandatorySwitch is raised. The default is False.

• requires – A list of switches that this switch depends on (“requires”). This means that
it’s invalid to invoke this switch without also invoking the required ones. In the example
above, it’s illegal to pass --verbose or --terse without also passing --log-to-file.

58 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

By default, this list is empty, which means the switch has no prerequisites. If an invalid
combination is given, SwitchCombinationError is raised.

Note that this list is made of the switch names; if a switch has more than a single name, any
of its names will do.

Note: There is no guarantee on the (topological) order in which the actual switch functions
will be invoked, as the dependency graph might contain cycles.

• excludes – A list of switches that this switch forbids (“excludes”). This means that it’s
invalid to invoke this switch if any of the excluded ones are given. In the example above, it’s
illegal to pass --verbose along with --terse, as it will result in a contradiction. By default,
this list is empty, which means the switch has no prerequisites. If an invalid combination is
given, SwitchCombinationError is raised.

Note that this list is made of the switch names; if a switch has more than a single name, any
of its names will do.

• help – The help message (description) for this switch; this description is used when --help
is given. If None, the function’s docstring will be used.

• overridable – Whether or not the names of this switch are overridable by other switches.
If False (the default), having another switch function with the same name(s) will cause an
exception. If True, this is silently ignored.

• group – The switch’s group; this is a string that is used to group related switches together
when --help is given. The default group is Switches.

Returns
The decorated function (with a _switch_info attribute)

plumbum.cli.switches.autoswitch(*args, **kwargs)
A decorator that exposes a function as a switch, “inferring” the name of the switch from the function’s name
(converting to lower-case, and replacing underscores with hyphens). The arguments are the same as for switch.

class plumbum.cli.switches.SwitchAttr(names, argtype=<class 'str'>, default=None, list=False,
argname='VALUE', **kwargs)

A switch that stores its result in an attribute (descriptor). Usage:

class MyApp(Application):
logfile = SwitchAttr(["-f", "--log-file"], str)

def main(self):
if self.logfile:

open(self.logfile, "w")

Parameters

• names – The switch names

• argtype – The switch argument’s (and attribute’s) type

• default – The attribute’s default value (None)

• argname – The switch argument’s name (default is "VALUE")

• kwargs – Any of the keyword arguments accepted by switch

5.1. Package plumbum.cli 59

Plumbum Shell Combinators Documentation, Release 1.8.2

class plumbum.cli.switches.Flag(names, default=False, **kwargs)
A specialized SwitchAttr for boolean flags. If the flag is not given, the value of this attribute is default; if it
is given, the value changes to not default. Usage:

class MyApp(Application):
verbose = Flag(["-v", "--verbose"], help = "If given, I'll be very talkative")

Parameters

• names – The switch names

• default – The attribute’s initial value (False by default)

• kwargs – Any of the keyword arguments accepted by switch, except for list and argtype.

class plumbum.cli.switches.CountOf(names, default=0, **kwargs)
A specialized SwitchAttr that counts the number of occurrences of the switch in the command line. Usage:

class MyApp(Application):
verbosity = CountOf(["-v", "--verbose"], help = "The more, the merrier")

If -v -v -vv is given in the command-line, it will result in verbosity = 4.

Parameters

• names – The switch names

• default – The default value (0)

• kwargs – Any of the keyword arguments accepted by switch, except for list and argtype.

class plumbum.cli.switches.positional(*args, **kargs)
Runs a validator on the main function for a class. This should be used like this:

class MyApp(cli.Application):
@cli.positional(cli.Range(1,10), cli.ExistingFile)
def main(self, x, *f):

x is a range, f's are all ExistingFile's)

Or, Python 3 only:

class MyApp(cli.Application):
def main(self, x : cli.Range(1,10), *f : cli.ExistingFile):

x is a range, f's are all ExistingFile's)

If you do not want to validate on the annotations, use this decorator (even if empty) to override annotation
validation.

Validators should be callable, and should have a .choices() function with possible choices. (For future argu-
ment completion, for example)

Default arguments do not go through the validator.

#TODO: Check with MyPy

class plumbum.cli.switches.Validator

choices(partial='')
Should return set of valid choices, can be given optional partial info

60 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

class plumbum.cli.switches.Range(start, end)
A switch-type validator that checks for the inclusion of a value in a certain range. Usage:

class MyApp(Application):
age = SwitchAttr(["--age"], Range(18, 120))

Parameters

• start – The minimal value

• end – The maximal value

choices(partial='')
Should return set of valid choices, can be given optional partial info

class plumbum.cli.switches.Set(*values: str | Callable[[str], str], case_sensitive: bool = False, csv: bool |
str = False, all_markers: collections.abc.Set[str] = frozenset({}))

A switch-type validator that checks that the value is contained in a defined set of values. Usage:

class MyApp(Application):
mode = SwitchAttr(["--mode"], Set("TCP", "UDP", case_sensitive = False))
num = SwitchAttr(["--num"], Set("MIN", "MAX", int, csv = True))

Parameters

• values – The set of values (strings), or other callable validators, or types, or any other object
that can be compared to a string.

• case_sensitive – A keyword argument that indicates whether to use case-sensitive com-
parison or not. The default is False

• csv – splits the input as a comma-separated-value before validating and returning a list.
Accepts True, False, or a string for the separator

• all_markers – When a user inputs any value from this set, all values are iterated over.
Something like {“*”, “all”} would be a potential setting for this option.

choices(partial='')
Should return set of valid choices, can be given optional partial info

class plumbum.cli.switches.Predicate(func)
A wrapper for a single-argument function with pretty printing

5.1.1 Terminal-related utilities

plumbum.cli.terminal.readline(message: str = '')→ str
Gets a line of input from the user (stdin)

plumbum.cli.terminal.ask(question: str, default: bool | None = None)→ bool
Presents the user with a yes/no question.

Parameters

• question – The question to ask

• default – If None, the user must answer. If True or False, lack of response is interpreted
as the default option

5.1. Package plumbum.cli 61

Plumbum Shell Combinators Documentation, Release 1.8.2

Returns
the user’s choice

plumbum.cli.terminal.choose(question, options, default=None)
Prompts the user with a question and a set of options, from which the user needs to choose.

Parameters

• question – The question to ask

• options – A set of options. It can be a list (of strings or two-tuples, mapping text to returned-
object) or a dict (mapping text to returned-object).``

• default – If None, the user must answer. Otherwise, lack of response is interpreted as this
answer

Returns
The user’s choice

Example:

ans = choose("What is your favorite color?", ["blue", "yellow", "green"], default =
→˓"yellow")
`ans` will be one of "blue", "yellow" or "green"

ans = choose("What is your favorite color?",
{"blue" : 0x0000ff, "yellow" : 0xffff00 , "green" : 0x00ff00}, default =␣

→˓0x00ff00)
this will display "blue", "yellow" and "green" but return a numerical value

plumbum.cli.terminal.prompt(question, type=<class 'str'>, default=NotImplemented, validator=<function
<lambda>>)

Presents the user with a validated question, keeps asking if validation does not pass.

Parameters

• question – The question to ask

• type – The type of the answer, defaults to str

• default – The default choice

• validator – An extra validator called after type conversion, can raise ValueError or return
False to trigger a retry.

Returns
the user’s choice

plumbum.cli.terminal.get_terminal_size(default: Tuple[int, int] = (80, 25))→ Tuple[int, int]
Get width and height of console; works on linux, os x, windows and cygwin

Adapted from https://gist.github.com/jtriley/1108174 Originally from: http://stackoverflow.com/questions/
566746/how-to-get-console-window-width-in-python

class plumbum.cli.terminal.Progress(iterator=None, length=None, timer=True, body=False,
has_output=False, clear=True)

start()

This should initialize the progress bar and the iterator

62 Chapter 5. API Reference

https://gist.github.com/jtriley/1108174
http://stackoverflow.com/questions/566746/how-to-get-console-window-width-in-python
http://stackoverflow.com/questions/566746/how-to-get-console-window-width-in-python

Plumbum Shell Combinators Documentation, Release 1.8.2

done()

Is called when the iterator is done.

display()

Called to update the progress bar

5.1.2 Terminal size utility

plumbum.cli.termsize.get_terminal_size(default: Tuple[int, int] = (80, 25))→ Tuple[int, int]
Get width and height of console; works on linux, os x, windows and cygwin

Adapted from https://gist.github.com/jtriley/1108174 Originally from: http://stackoverflow.com/questions/
566746/how-to-get-console-window-width-in-python

5.1.3 Progress bar

class plumbum.cli.progress.ProgressBase(iterator=None, length=None, timer=True, body=False,
has_output=False, clear=True)

Base class for progress bars. Customize for types of progress bars.

Parameters

• iterator – The iterator to wrap with a progress bar

• length – The length of the iterator (will use __len__ if None)

• timer – Try to time the completion status of the iterator

• body – True if the slow portion occurs outside the iterator (in a loop, for example)

• has_output – True if the iteration body produces output to the screen (forces rewrite off)

• clear – Clear the progress bar afterwards, if applicable.

abstract start()

This should initialize the progress bar and the iterator

property value

This is the current value, as a property so setting it can be customized

abstract display()

Called to update the progress bar

increment()

Sets next value and displays the bar

time_remaining()

Get the time remaining for the progress bar, guesses

str_time_remaining()

Returns a string version of time remaining

abstract done()

Is called when the iterator is done.

classmethod range(*value, **kargs)
Fast shortcut to create a range based progress bar, assumes work done in body

5.1. Package plumbum.cli 63

https://gist.github.com/jtriley/1108174
http://stackoverflow.com/questions/566746/how-to-get-console-window-width-in-python
http://stackoverflow.com/questions/566746/how-to-get-console-window-width-in-python

Plumbum Shell Combinators Documentation, Release 1.8.2

classmethod wrap(iterator, length=None, **kargs)
Shortcut to wrap an iterator that does not do all the work internally

class plumbum.cli.progress.Progress(iterator=None, length=None, timer=True, body=False,
has_output=False, clear=True)

start()

This should initialize the progress bar and the iterator

done()

Is called when the iterator is done.

display()

Called to update the progress bar

class plumbum.cli.progress.ProgressIPy(*args, **kargs)

start()

This should initialize the progress bar and the iterator

property value

This is the current value, -1 allowed (automatically fixed for display)

display()

Called to update the progress bar

done()

Is called when the iterator is done.

class plumbum.cli.progress.ProgressAuto(*args, **kargs)
Automatically selects the best progress bar (IPython HTML or text). Does not work with qtconsole (as that is
correctly identified as identical to notebook, since the kernel is the same); it will still iterate, but no graphical
indication will be displayed.

Parameters

• iterator – The iterator to wrap with a progress bar

• length – The length of the iterator (will use __len__ if None)

• timer – Try to time the completion status of the iterator

• body – True if the slow portion occurs outside the iterator (in a loop, for example)

5.2 Package plumbum.commands

plumbum.commands.base.iter_lines(proc, retcode=0, timeout=None, linesize=-1, line_timeout=None,
buffer_size=None, mode=None, _iter_lines=<function
_iter_lines_posix>)

Runs the given process (equivalent to run_proc()) and yields a tuples of (out, err) line pairs. If the exit code of
the process does not match the expected one, ProcessExecutionError is raised.

Parameters

• retcode – The expected return code of this process (defaults to 0). In order to disable exit-
code validation, pass None. It may also be a tuple (or any iterable) of expected exit codes.

64 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

• timeout – The maximal amount of time (in seconds) to allow the process to run. None
means no timeout is imposed; otherwise, if the process hasn’t terminated after that many
seconds, the process will be forcefully terminated an exception will be raised

• linesize – Maximum number of characters to read from stdout/stderr at each iteration. -1
(default) reads until a b’n’ is encountered.

• line_timeout – The maximal amount of time (in seconds) to allow between consecutive
lines in either stream. Raise an ProcessLineTimedOut if the timeout has been reached.
None means no timeout is imposed.

• buffer_size – Maximum number of lines to keep in the stdout/stderr buffers, in case of
a ProcessExecutionError. Default is None, which defaults to DEFAULT_BUFFER_SIZE
(which is infinite by default). 0 will disable bufferring completely.

• mode – Controls what the generator yields. Defaults to DEFAULT_ITER_LINES_MODE
(which is BY_POSITION by default) - BY_POSITION (default): yields (out, err) line
tuples, where either item may be None - BY_TYPE: yields (fd, line) tuples, where fd is
1 (stdout) or 2 (stderr)

Returns
An iterator of (out, err) line tuples.

plumbum.commands.base.run_proc(proc, retcode, timeout=None)
Waits for the given process to terminate, with the expected exit code

Parameters

• proc – a running Popen-like object, with all the expected methods.

• retcode – the expected return (exit) code of the process. It defaults to 0 (the convention
for success). If None, the return code is ignored. It may also be a tuple (or any object that
supports __contains__) of expected return codes.

• timeout – the number of seconds (a float) to allow the process to run, before forcefully ter-
minating it. If None, not timeout is imposed; otherwise the process is expected to terminate
within that timeout value, or it will be killed and ProcessTimedOut will be raised

Returns
A tuple of (return code, stdout, stderr)

plumbum.commands.base.shquote(text)
Quotes the given text with shell escaping (assumes as syntax similar to sh)

exception plumbum.commands.base.RedirectionError

Raised when an attempt is made to redirect an process’ standard handle, which was already redirected to/from a
file

__weakref__

list of weak references to the object (if defined)

class plumbum.commands.base.BaseCommand

Base of all command objects

__str__()

Return str(self).

__or__(other)
Creates a pipe with the other command

5.2. Package plumbum.commands 65

Plumbum Shell Combinators Documentation, Release 1.8.2

__gt__(file)
Redirects the process’ stdout to the given file

__rshift__(file)
Redirects the process’ stdout to the given file (appending)

__ge__(file)
Redirects the process’ stderr to the given file

__lt__(file)
Redirects the given file into the process’ stdin

__lshift__(data)
Redirects the given data into the process’ stdin

__getitem__(args)
Creates a bound-command with the given arguments. Shortcut for bound_command.

bound_command(*args)
Creates a bound-command with the given arguments

__call__(*args, **kwargs)
A shortcut for run(args), returning only the process’ stdout

with_env(**env)
Returns a BoundEnvCommand with the given environment variables

with_cwd(path)
Returns a BoundEnvCommand with the specified working directory. This overrides a cwd specified in a
wrapping machine.cwd() context manager.

setenv(**env)
Returns a BoundEnvCommand with the given environment variables

formulate(level=0, args=())
Formulates the command into a command-line, i.e., a list of shell-quoted strings that can be executed by
Popen or shells.

Parameters

• level – The nesting level of the formulation; it dictates how much shell-quoting (if any)
should be performed

• args – The arguments passed to this command (a tuple)

Returns
A list of strings

popen(args=(), **kwargs)
Spawns the given command, returning a Popen-like object.

Note: When processes run in the background (either via popen or & BG), their stdout/stderr pipes might
fill up, causing them to hang. If you know a process produces output, be sure to consume it every once in
a while, using a monitoring thread/reactor in the background. For more info, see #48

Parameters

• args – Any arguments to be passed to the process (a tuple)

66 Chapter 5. API Reference

https://github.com/tomerfiliba/plumbum/issues/48

Plumbum Shell Combinators Documentation, Release 1.8.2

• kwargs – Any keyword-arguments to be passed to the Popen constructor

Returns
A Popen-like object

nohup(cwd='.', stdout='nohup.out', stderr=None, append=True)
Runs a command detached.

bgrun(args=(), **kwargs)
Runs the given command as a context manager, allowing you to create a pipeline (not in the UNIX sense) of
programs, parallelizing their work. In other words, instead of running programs one after the other, you can
start all of them at the same time and wait for them to finish. For a more thorough review, see Lightweight
Asynchronism.

Example:

from plumbum.cmd import mkfs

with mkfs["-t", "ext3", "/dev/sda1"] as p1:
with mkfs["-t", "ext3", "/dev/sdb1"] as p2:

pass

Note: When processes run in the background (either via popen or & BG), their stdout/stderr pipes might
fill up, causing them to hang. If you know a process produces output, be sure to consume it every once in
a while, using a monitoring thread/reactor in the background. For more info, see #48

For the arguments, see run.

Returns
A Popen object, augmented with a .run() method, which returns a tuple of (return code,
stdout, stderr)

run(args=(), **kwargs)
Runs the given command (equivalent to popen() followed by run_proc). If the exit code of the process
does not match the expected one, ProcessExecutionError is raised.

Parameters

• args – Any arguments to be passed to the process (a tuple)

• retcode – The expected return code of this process (defaults to 0). In order to disable
exit-code validation, pass None. It may also be a tuple (or any iterable) of expected exit
codes.

Note: this argument must be passed as a keyword argument.

• timeout – The maximal amount of time (in seconds) to allow the process to run. None
means no timeout is imposed; otherwise, if the process hasn’t terminated after that many
seconds, the process will be forcefully terminated an exception will be raised

Note: this argument must be passed as a keyword argument.

• kwargs – Any keyword-arguments to be passed to the Popen constructor

5.2. Package plumbum.commands 67

http://en.wikipedia.org/wiki/Pipeline_(computing)
http://tomerfiliba.com/blog/Toying-with-Context-Managers/
http://tomerfiliba.com/blog/Toying-with-Context-Managers/
https://github.com/tomerfiliba/plumbum/issues/48

Plumbum Shell Combinators Documentation, Release 1.8.2

Returns
A tuple of (return code, stdout, stderr)

run_bg(**kwargs)
Run this command in the background. Uses all arguments from the BG construct :py:class:
plumbum.commands.modifiers.BG

run_fg(**kwargs)
Run this command in the foreground. Uses all arguments from the FG construct :py:class:
plumbum.commands.modifiers.FG

run_tee(**kwargs)
Run this command using the TEE construct. Inherits all arguments from TEE :py:class:
plumbum.commands.modifiers.TEE

run_tf(**kwargs)
Run this command using the TF construct. Inherits all arguments from TF :py:class:
plumbum.commands.modifiers.TF

run_retcode(**kwargs)
Run this command using the RETCODE construct. Inherits all arguments from RETCODE :py:class:
plumbum.commands.modifiers.RETCODE

run_nohup(**kwargs)
Run this command using the NOHUP construct. Inherits all arguments from NOHUP :py:class:
plumbum.commands.modifiers.NOHUP

class plumbum.commands.base.Pipeline(srccmd, dstcmd)

__init__(srccmd, dstcmd)

__repr__()

Return repr(self).

formulate(level=0, args=())
Formulates the command into a command-line, i.e., a list of shell-quoted strings that can be executed by
Popen or shells.

Parameters

• level – The nesting level of the formulation; it dictates how much shell-quoting (if any)
should be performed

• args – The arguments passed to this command (a tuple)

Returns
A list of strings

popen(args=(), **kwargs)
Spawns the given command, returning a Popen-like object.

Note: When processes run in the background (either via popen or & BG), their stdout/stderr pipes might
fill up, causing them to hang. If you know a process produces output, be sure to consume it every once in
a while, using a monitoring thread/reactor in the background. For more info, see #48

Parameters

• args – Any arguments to be passed to the process (a tuple)

68 Chapter 5. API Reference

https://github.com/tomerfiliba/plumbum/issues/48

Plumbum Shell Combinators Documentation, Release 1.8.2

• kwargs – Any keyword-arguments to be passed to the Popen constructor

Returns
A Popen-like object

class plumbum.commands.base.BaseRedirection(cmd, file)

__init__(cmd, file)

__repr__()

Return repr(self).

formulate(level=0, args=())
Formulates the command into a command-line, i.e., a list of shell-quoted strings that can be executed by
Popen or shells.

Parameters

• level – The nesting level of the formulation; it dictates how much shell-quoting (if any)
should be performed

• args – The arguments passed to this command (a tuple)

Returns
A list of strings

popen(args=(), **kwargs)
Spawns the given command, returning a Popen-like object.

Note: When processes run in the background (either via popen or & BG), their stdout/stderr pipes might
fill up, causing them to hang. If you know a process produces output, be sure to consume it every once in
a while, using a monitoring thread/reactor in the background. For more info, see #48

Parameters

• args – Any arguments to be passed to the process (a tuple)

• kwargs – Any keyword-arguments to be passed to the Popen constructor

Returns
A Popen-like object

class plumbum.commands.base.BoundCommand(cmd, args)

__init__(cmd, args)

__repr__()

Return repr(self).

formulate(level=0, args=())
Formulates the command into a command-line, i.e., a list of shell-quoted strings that can be executed by
Popen or shells.

Parameters

• level – The nesting level of the formulation; it dictates how much shell-quoting (if any)
should be performed

• args – The arguments passed to this command (a tuple)

5.2. Package plumbum.commands 69

https://github.com/tomerfiliba/plumbum/issues/48

Plumbum Shell Combinators Documentation, Release 1.8.2

Returns
A list of strings

popen(args=(), **kwargs)
Spawns the given command, returning a Popen-like object.

Note: When processes run in the background (either via popen or & BG), their stdout/stderr pipes might
fill up, causing them to hang. If you know a process produces output, be sure to consume it every once in
a while, using a monitoring thread/reactor in the background. For more info, see #48

Parameters

• args – Any arguments to be passed to the process (a tuple)

• kwargs – Any keyword-arguments to be passed to the Popen constructor

Returns
A Popen-like object

class plumbum.commands.base.BoundEnvCommand(cmd, env=None, cwd=None)

__init__(cmd, env=None, cwd=None)

__repr__()

Return repr(self).

formulate(level=0, args=())
Formulates the command into a command-line, i.e., a list of shell-quoted strings that can be executed by
Popen or shells.

Parameters

• level – The nesting level of the formulation; it dictates how much shell-quoting (if any)
should be performed

• args – The arguments passed to this command (a tuple)

Returns
A list of strings

popen(args=(), cwd=None, env=None, **kwargs)
Spawns the given command, returning a Popen-like object.

Note: When processes run in the background (either via popen or & BG), their stdout/stderr pipes might
fill up, causing them to hang. If you know a process produces output, be sure to consume it every once in
a while, using a monitoring thread/reactor in the background. For more info, see #48

Parameters

• args – Any arguments to be passed to the process (a tuple)

• kwargs – Any keyword-arguments to be passed to the Popen constructor

Returns
A Popen-like object

70 Chapter 5. API Reference

https://github.com/tomerfiliba/plumbum/issues/48
https://github.com/tomerfiliba/plumbum/issues/48

Plumbum Shell Combinators Documentation, Release 1.8.2

class plumbum.commands.base.ConcreteCommand(executable, encoding)

__init__(executable, encoding)

__str__()

Return str(self).

__repr__()

Return repr(self).

formulate(level=0, args=())
Formulates the command into a command-line, i.e., a list of shell-quoted strings that can be executed by
Popen or shells.

Parameters

• level – The nesting level of the formulation; it dictates how much shell-quoting (if any)
should be performed

• args – The arguments passed to this command (a tuple)

Returns
A list of strings

popen(args=(), **kwargs)
Spawns the given command, returning a Popen-like object.

Note: When processes run in the background (either via popen or & BG), their stdout/stderr pipes might
fill up, causing them to hang. If you know a process produces output, be sure to consume it every once in
a while, using a monitoring thread/reactor in the background. For more info, see #48

Parameters

• args – Any arguments to be passed to the process (a tuple)

• kwargs – Any keyword-arguments to be passed to the Popen constructor

Returns
A Popen-like object

class plumbum.commands.base.StdinRedirection(cmd, file)

class plumbum.commands.base.StdoutRedirection(cmd, file)

class plumbum.commands.base.StderrRedirection(cmd, file)

class plumbum.commands.base.AppendingStdoutRedirection(cmd, file)

class plumbum.commands.base.StdinDataRedirection(cmd, data)

__init__(cmd, data)

formulate(level=0, args=())
Formulates the command into a command-line, i.e., a list of shell-quoted strings that can be executed by
Popen or shells.

Parameters

• level – The nesting level of the formulation; it dictates how much shell-quoting (if any)
should be performed

5.2. Package plumbum.commands 71

https://github.com/tomerfiliba/plumbum/issues/48

Plumbum Shell Combinators Documentation, Release 1.8.2

• args – The arguments passed to this command (a tuple)

Returns
A list of strings

popen(args=(), **kwargs)
Spawns the given command, returning a Popen-like object.

Note: When processes run in the background (either via popen or & BG), their stdout/stderr pipes might
fill up, causing them to hang. If you know a process produces output, be sure to consume it every once in
a while, using a monitoring thread/reactor in the background. For more info, see #48

Parameters

• args – Any arguments to be passed to the process (a tuple)

• kwargs – Any keyword-arguments to be passed to the Popen constructor

Returns
A Popen-like object

class plumbum.commands.modifiers.Future(proc, expected_retcode, timeout=None)
Represents a “future result” of a running process. It basically wraps a Popen object and the expected exit code,
and provides poll(), wait(), returncode, stdout, and stderr.

__init__(proc, expected_retcode, timeout=None)

__repr__()

Return repr(self).

poll()

Polls the underlying process for termination; returns False if still running, or True if terminated

ready()

Polls the underlying process for termination; returns False if still running, or True if terminated

wait()

Waits for the process to terminate; will raise a plumbum.commands.ProcessExecutionError in case of
failure

property stdout

The process’ stdout; accessing this property will wait for the process to finish

property stderr

The process’ stderr; accessing this property will wait for the process to finish

property returncode

The process’ returncode; accessing this property will wait for the process to finish

__weakref__

list of weak references to the object (if defined)

class plumbum.commands.modifiers.PipeToLoggerMixin

This mixin allows piping plumbum commands’ output into a logger. The logger must implement a log(level,
msg) method, as in logging.Logger

Example:

72 Chapter 5. API Reference

https://github.com/tomerfiliba/plumbum/issues/48

Plumbum Shell Combinators Documentation, Release 1.8.2

class MyLogger(logging.Logger, PipeToLoggerMixin):
pass

logger = MyLogger("example.app")

Here we send the output of an install.sh script into our log:

local['./install.sh'] & logger

We can choose the log-level for each stream:

local['./install.sh'] & logger.pipe(out_level=logging.DEBUG, err_level=logging.
→˓DEBUG)

Or use a convenience method for it:

local['./install.sh'] & logger.pipe_debug()

A prefix can be added to each line:

local['./install.sh'] & logger.pipe(prefix="install.sh: ")

If the command fails, an exception is raised as usual. This can be modified:

local['install.sh'] & logger.pipe_debug(retcode=None)

An exception is also raised if too much time (DEFAULT_LINE_TIMEOUT) passed between lines in the stream, This
can also be modified:

local['install.sh'] & logger.pipe(line_timeout=10)

If we happen to use logbook:

class MyLogger(logbook.Logger, PipeToLoggerMixin):
from logbook import DEBUG, INFO # hook up with logbook's levels

pipe(out_level=None, err_level=None, prefix=None, line_timeout=None, **kw)
Pipe a command’s stdout and stderr lines into this logger.

Parameters

• out_level – the log level for lines coming from stdout

• err_level – the log level for lines coming from stderr

Optionally use prefix for each line.

pipe_info(prefix=None, **kw)
Pipe a command’s stdout and stderr lines into this logger (both at level INFO)

pipe_debug(prefix=None, **kw)
Pipe a command’s stdout and stderr lines into this logger (both at level DEBUG)

__rand__(cmd)
Pipe a command’s stdout and stderr lines into this logger. Log levels for each stream are determined by
DEFAULT_STDOUT and DEFAULT_STDERR.

5.2. Package plumbum.commands 73

Plumbum Shell Combinators Documentation, Release 1.8.2

__weakref__

list of weak references to the object (if defined)

exception plumbum.commands.processes.ProcessExecutionError(argv, retcode, stdout, stderr,
message=None, *, host=None)

Represents the failure of a process. When the exit code of a terminated process does not match the expected
result, this exception is raised by run_proc. It contains the process’ return code, stdout, and stderr, as well as
the command line used to create the process (argv)

__init__(argv, retcode, stdout, stderr, message=None, *, host=None)

__str__()

Return str(self).

__weakref__

list of weak references to the object (if defined)

exception plumbum.commands.processes.ProcessTimedOut(msg, argv)
Raises by run_proc when a timeout has been specified and it has elapsed before the process terminated

__init__(msg, argv)

__weakref__

list of weak references to the object (if defined)

exception plumbum.commands.processes.ProcessLineTimedOut(msg, argv, machine)
Raises by iter_lines when a line_timeout has been specified and it has elapsed before the process yielded
another line

__init__(msg, argv, machine)

__weakref__

list of weak references to the object (if defined)

exception plumbum.commands.processes.CommandNotFound(program, path)
Raised by local.which and RemoteMachine.which when a command was not found in the system’s PATH

__init__(program, path)

__weakref__

list of weak references to the object (if defined)

plumbum.commands.processes.run_proc(proc, retcode, timeout=None)
Waits for the given process to terminate, with the expected exit code

Parameters

• proc – a running Popen-like object, with all the expected methods.

• retcode – the expected return (exit) code of the process. It defaults to 0 (the convention
for success). If None, the return code is ignored. It may also be a tuple (or any object that
supports __contains__) of expected return codes.

• timeout – the number of seconds (a float) to allow the process to run, before forcefully ter-
minating it. If None, not timeout is imposed; otherwise the process is expected to terminate
within that timeout value, or it will be killed and ProcessTimedOut will be raised

Returns
A tuple of (return code, stdout, stderr)

74 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

plumbum.commands.processes.iter_lines(proc, retcode=0, timeout=None, linesize=-1, line_timeout=None,
buffer_size=None, mode=None, _iter_lines=<function
_iter_lines_posix>)

Runs the given process (equivalent to run_proc()) and yields a tuples of (out, err) line pairs. If the exit code of
the process does not match the expected one, ProcessExecutionError is raised.

Parameters

• retcode – The expected return code of this process (defaults to 0). In order to disable exit-
code validation, pass None. It may also be a tuple (or any iterable) of expected exit codes.

• timeout – The maximal amount of time (in seconds) to allow the process to run. None
means no timeout is imposed; otherwise, if the process hasn’t terminated after that many
seconds, the process will be forcefully terminated an exception will be raised

• linesize – Maximum number of characters to read from stdout/stderr at each iteration. -1
(default) reads until a b’n’ is encountered.

• line_timeout – The maximal amount of time (in seconds) to allow between consecutive
lines in either stream. Raise an ProcessLineTimedOut if the timeout has been reached.
None means no timeout is imposed.

• buffer_size – Maximum number of lines to keep in the stdout/stderr buffers, in case of
a ProcessExecutionError. Default is None, which defaults to DEFAULT_BUFFER_SIZE
(which is infinite by default). 0 will disable bufferring completely.

• mode – Controls what the generator yields. Defaults to DEFAULT_ITER_LINES_MODE
(which is BY_POSITION by default) - BY_POSITION (default): yields (out, err) line
tuples, where either item may be None - BY_TYPE: yields (fd, line) tuples, where fd is
1 (stdout) or 2 (stderr)

Returns
An iterator of (out, err) line tuples.

5.3 Package plumbum.machines

class plumbum.machines.env.EnvPathList(path_factory, pathsep)

__init__(path_factory, pathsep)

append(path)
Append object to the end of the list.

extend(paths)
Extend list by appending elements from the iterable.

insert(index, path)
Insert object before index.

index(path)
Return first index of value.

Raises ValueError if the value is not present.

__contains__(path)
Return key in self.

5.3. Package plumbum.machines 75

Plumbum Shell Combinators Documentation, Release 1.8.2

remove(path)
Remove first occurrence of value.

Raises ValueError if the value is not present.

class plumbum.machines.env.BaseEnv(path_factory, pathsep, *, _curr)
The base class of LocalEnv and RemoteEnv

__init__(path_factory, pathsep, *, _curr)

__call__(*args, **kwargs)
A context manager that can be used for temporal modifications of the environment. Any time you enter the
context, a copy of the old environment is stored, and then restored, when the context exits.

Parameters

• args – Any positional arguments for update()

• kwargs – Any keyword arguments for update()

__iter__()

Returns an iterator over the items (key, value) of current environment (like dict.items)

__hash__()

Return hash(self).

__len__()

Returns the number of elements of the current environment

__contains__(name)
Tests whether an environment variable exists in the current environment

__getitem__(name)
Returns the value of the given environment variable from current environment, raising a KeyError if it
does not exist

keys()

Returns the keys of the current environment (like dict.keys)

items()

Returns the items of the current environment (like dict.items)

values()

Returns the values of the current environment (like dict.values)

get(name, *default)
Returns the keys of the current environment (like dict.keys)

__delitem__(name)
Deletes an environment variable from the current environment

__setitem__(name, value)
Sets/replaces an environment variable’s value in the current environment

pop(name, *default)
Pops an element from the current environment (like dict.pop)

clear()

Clears the current environment (like dict.clear)

76 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

update(*args, **kwargs)
Updates the current environment (like dict.update)

getdict()

Returns the environment as a real dictionary

property path

The system’s PATH (as an easy-to-manipulate list)

property home

Get or set the home path

property user

Return the user name, or None if it is not set

class plumbum.machines.local.PlumbumLocalPopen(*args, **kwargs)

iter_lines(retcode=0, timeout=None, linesize=-1, line_timeout=None, buffer_size=None, mode=None,
_iter_lines=<function _iter_lines_posix>)

Runs the given process (equivalent to run_proc()) and yields a tuples of (out, err) line pairs. If the exit code
of the process does not match the expected one, ProcessExecutionError is raised.

Parameters

• retcode – The expected return code of this process (defaults to 0). In order to disable
exit-code validation, pass None. It may also be a tuple (or any iterable) of expected exit
codes.

• timeout – The maximal amount of time (in seconds) to allow the process to run. None
means no timeout is imposed; otherwise, if the process hasn’t terminated after that many
seconds, the process will be forcefully terminated an exception will be raised

• linesize – Maximum number of characters to read from stdout/stderr at each iteration.
-1 (default) reads until a b’n’ is encountered.

• line_timeout – The maximal amount of time (in seconds) to allow between consecutive
lines in either stream. Raise an ProcessLineTimedOut if the timeout has been reached.
None means no timeout is imposed.

• buffer_size – Maximum number of lines to keep in the stdout/stderr buffers, in case of
a ProcessExecutionError. Default is None, which defaults to DEFAULT_BUFFER_SIZE
(which is infinite by default). 0 will disable bufferring completely.

• mode – Controls what the generator yields. Defaults to DEFAULT_ITER_LINES_MODE
(which is BY_POSITION by default) - BY_POSITION (default): yields (out, err) line
tuples, where either item may be None - BY_TYPE: yields (fd, line) tuples, where fd
is 1 (stdout) or 2 (stderr)

Returns
An iterator of (out, err) line tuples.

__init__(*args, **kwargs)

class plumbum.machines.local.LocalEnv

The local machine’s environment; exposes a dict-like interface

__init__()

5.3. Package plumbum.machines 77

Plumbum Shell Combinators Documentation, Release 1.8.2

expand(expr)
Expands any environment variables and home shortcuts found in expr (like os.path.expanduser com-
bined with os.path.expandvars)

Parameters
expr – An expression containing environment variables (as $FOO) or home shortcuts (as ~/
.bashrc)

Returns
The expanded string

expanduser(expr)
Expand home shortcuts (e.g., ~/foo/bar or ~john/foo/bar)

Parameters
expr – An expression containing home shortcuts

Returns
The expanded string

class plumbum.machines.local.LocalCommand(executable, encoding='auto')

__init__(executable, encoding='auto')

popen(args=(), cwd=None, env=None, **kwargs)
Spawns the given command, returning a Popen-like object.

Note: When processes run in the background (either via popen or & BG), their stdout/stderr pipes might
fill up, causing them to hang. If you know a process produces output, be sure to consume it every once in
a while, using a monitoring thread/reactor in the background. For more info, see #48

Parameters

• args – Any arguments to be passed to the process (a tuple)

• kwargs – Any keyword-arguments to be passed to the Popen constructor

Returns
A Popen-like object

class plumbum.machines.local.LocalMachine

The local machine (a singleton object). It serves as an entry point to everything related to the local machine,
such as working directory and environment manipulation, command creation, etc.

Attributes:

• cwd - the local working directory

• env - the local environment

• custom_encoding - the local machine’s default encoding (sys.getfilesystemencoding())

__init__()

classmethod which(progname)
Looks up a program in the PATH. If the program is not found, raises CommandNotFound

78 Chapter 5. API Reference

https://github.com/tomerfiliba/plumbum/issues/48

Plumbum Shell Combinators Documentation, Release 1.8.2

Parameters
progname – The program’s name. Note that if underscores (_) are present in the name, and
the exact name is not found, they will be replaced in turn by hyphens (-) then periods (.), and
the name will be looked up again for each alternative

Returns
A LocalPath

path(*parts)
A factory for LocalPaths. Usage: p = local.path("/usr", "lib", "python2.7")

__contains__(cmd)
Tests for the existence of the command, e.g., "ls" in plumbum.local. cmd can be anything acceptable
by __getitem__.

__getitem__(cmd)
Returns a Command object representing the given program. cmd can be a string or a LocalPath ; if it is a
path, a command representing this path will be returned; otherwise, the program name will be looked up
in the system’s PATH (using which). Usage:

ls = local["ls"]

daemonic_popen(command, cwd='/', stdout=None, stderr=None, append=True)
On POSIX systems:

Run command as a UNIX daemon: fork a child process to setpid, redirect std handles to /dev/null, umask,
close all fds, chdir to cwd, then fork and exec command. Returns a Popen process that can be used to
poll/wait for the executed command (but keep in mind that you cannot access std handles)

On Windows:

Run command as a “Windows daemon”: detach from controlling console and create a new process group.
This means that the command will not receive console events and would survive its parent’s termination.
Returns a Popen object.

Note: this does not run command as a system service, only detaches it from its parent.

New in version 1.3.

list_processes()

Returns information about all running processes (on POSIX systems: using ps)

New in version 1.3.

pgrep(pattern)
Process grep: return information about all processes whose command-line args match the given regex
pattern

session(new_session=False)
Creates a new ShellSession object; this invokes /bin/sh and executes commands on it over
stdin/stdout/stderr

tempdir()

A context manager that creates a temporary directory, which is removed when the context exits

as_user(username=None)
Run nested commands as the given user. For example:

5.3. Package plumbum.machines 79

Plumbum Shell Combinators Documentation, Release 1.8.2

head = local["head"]
head("-n1", "/dev/sda1") # this will fail...
with local.as_user():

head("-n1", "/dev/sda1")

Parameters
username – The user to run commands as. If not given, root (or Administrator) is assumed

as_root()

A shorthand for as_user("root")

python = LocalCommand(/home/docs/checkouts/readthedocs.org/user_builds/plumbum/envs/
stable/bin/python)

A command that represents the current python interpreter (sys.executable)

plumbum.machines.local.local = <plumbum.machines.local.LocalMachine object>

The local machine (a singleton object). It serves as an entry point to everything related to the local machine,
such as working directory and environment manipulation, command creation, etc.

Attributes:

• cwd - the local working directory

• env - the local environment

• custom_encoding - the local machine’s default encoding (sys.getfilesystemencoding())

exception plumbum.machines.session.ShellSessionError

Raises when something goes wrong when calling ShellSession.popen

__weakref__

list of weak references to the object (if defined)

exception plumbum.machines.session.SSHCommsError(argv, retcode, stdout, stderr, message=None, *,
host=None)

Raises when the communication channel can’t be created on the remote host or it times out.

exception plumbum.machines.session.SSHCommsChannel2Error(argv, retcode, stdout, stderr,
message=None, *, host=None)

Raises when channel 2 (stderr) is not available

exception plumbum.machines.session.IncorrectLogin(argv, retcode, stdout, stderr, message=None, *,
host=None)

Raises when incorrect login credentials are provided

exception plumbum.machines.session.HostPublicKeyUnknown(argv, retcode, stdout, stderr,
message=None, *, host=None)

Raises when the host public key isn’t known

class plumbum.machines.session.MarkedPipe(pipe, marker)
A pipe-like object from which you can read lines; the pipe will return report EOF (the empty string) when a
special marker is detected

__init__(pipe, marker)

close()

‘Closes’ the marked pipe; following calls to readline will return “”

80 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

readline()

Reads the next line from the pipe; returns “” when the special marker is reached. Raises EOFError if the
underlying pipe has closed

class plumbum.machines.session.SessionPopen(proc, argv, isatty, stdin, stdout, stderr, encoding, *, host)
A shell-session-based Popen-like object (has the following attributes: stdin, stdout, stderr, returncode)

__init__(proc, argv, isatty, stdin, stdout, stderr, encoding, *, host)

poll()

Returns the process’ exit code or None if it’s still running

wait()

Waits for the process to terminate and returns its exit code

communicate(input=None)
Consumes the process’ stdout and stderr until the it terminates.

Parameters
input – An optional bytes/buffer object to send to the process over stdin

Returns
A tuple of (stdout, stderr)

class plumbum.machines.session.ShellSession(proc, encoding='auto', isatty=False, connect_timeout=5, *,
host=None)

An abstraction layer over shell sessions. A shell session is the execution of an interactive shell (/bin/sh or
something compatible), over which you may run commands (sent over stdin). The output of is then read from
stdout and stderr. Shell sessions are less “robust” than executing a process on its own, and they are susseptible
to all sorts of malformatted-strings attacks, and there is little benefit from using them locally. However, they can
greatly speed up remote connections, and are required for the implementation of SshMachine, as they allow us
to send multiple commands over a single SSH connection (setting up separate SSH connections incurs a high
overhead). Try to avoid using shell sessions, unless you know what you’re doing.

Instances of this class may be used as context-managers.

Parameters

• proc – The underlying shell process (with open stdin, stdout and stderr)

• encoding – The encoding to use for the shell session. If "auto", the underlying process’
encoding is used.

• isatty – If true, assume the shell has a TTY and that stdout and stderr are unified

• connect_timeout – The timeout to connect to the shell, after which, if no prompt is seen,
the shell process is killed

__init__(proc, encoding='auto', isatty=False, connect_timeout=5, *, host=None)

alive()

Returns True if the underlying shell process is alive, False otherwise

close()

Closes (terminates) the shell session

__weakref__

list of weak references to the object (if defined)

5.3. Package plumbum.machines 81

Plumbum Shell Combinators Documentation, Release 1.8.2

popen(cmd)
Runs the given command in the shell, adding some decoration around it. Only a single command can be
executed at any given time.

Parameters
cmd – The command (string or Command object) to run

Returns
A SessionPopen instance

run(cmd, retcode=0)
Runs the given command

Parameters

• cmd – The command (string or Command object) to run

• retcode – The expected return code (0 by default). Set to None in order to ignore erro-
neous return codes

Returns
A tuple of (return code, stdout, stderr)

5.3.1 Remote Machines

class plumbum.machines.remote.RemoteEnv(remote)
The remote machine’s environment; exposes a dict-like interface

__init__(remote)

__delitem__(name)
Deletes an environment variable from the current environment

__setitem__(name, value)
Sets/replaces an environment variable’s value in the current environment

pop(name, *default)
Pops an element from the current environment (like dict.pop)

update(*args, **kwargs)
Updates the current environment (like dict.update)

expand(expr)
Expands any environment variables and home shortcuts found in expr (like os.path.expanduser com-
bined with os.path.expandvars)

Parameters
expr – An expression containing environment variables (as $FOO) or home shortcuts (as ~/
.bashrc)

Returns
The expanded string

expanduser(expr)
Expand home shortcuts (e.g., ~/foo/bar or ~john/foo/bar)

Parameters
expr – An expression containing home shortcuts

82 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

Returns
The expanded string

getdelta()

Returns the difference between the this environment and the original environment of the remote machine

class plumbum.machines.remote.RemoteCommand(remote, executable, encoding='auto')

__init__(remote, executable, encoding='auto')

__repr__()

Return repr(self).

popen(args=(), **kwargs)
Spawns the given command, returning a Popen-like object.

Note: When processes run in the background (either via popen or & BG), their stdout/stderr pipes might
fill up, causing them to hang. If you know a process produces output, be sure to consume it every once in
a while, using a monitoring thread/reactor in the background. For more info, see #48

Parameters

• args – Any arguments to be passed to the process (a tuple)

• kwargs – Any keyword-arguments to be passed to the Popen constructor

Returns
A Popen-like object

nohup(cwd='.', stdout='nohup.out', stderr=None, append=True)
Runs a command detached.

exception plumbum.machines.remote.ClosedRemoteMachine

__weakref__

list of weak references to the object (if defined)

class plumbum.machines.remote.BaseRemoteMachine(encoding='utf8', connect_timeout=10,
new_session=False)

Represents a remote machine; serves as an entry point to everything related to that remote machine, such as
working directory and environment manipulation, command creation, etc.

Attributes:

• cwd - the remote working directory

• env - the remote environment

• custom_encoding - the remote machine’s default encoding (assumed to be UTF8)

• connect_timeout - the connection timeout

There also is a _cwd attribute that exists if the cwd is not current (del if cwd is changed).

class RemoteCommand(remote, executable, encoding='auto')

__init__(remote, executable, encoding='auto')

5.3. Package plumbum.machines 83

https://github.com/tomerfiliba/plumbum/issues/48

Plumbum Shell Combinators Documentation, Release 1.8.2

__repr__()

Return repr(self).

nohup(cwd='.', stdout='nohup.out', stderr=None, append=True)
Runs a command detached.

popen(args=(), **kwargs)
Spawns the given command, returning a Popen-like object.

Note: When processes run in the background (either via popen or & BG), their stdout/stderr pipes
might fill up, causing them to hang. If you know a process produces output, be sure to consume it
every once in a while, using a monitoring thread/reactor in the background. For more info, see #48

Parameters
• args – Any arguments to be passed to the process (a tuple)
• kwargs – Any keyword-arguments to be passed to the Popen constructor

Returns
A Popen-like object

__init__(encoding='utf8', connect_timeout=10, new_session=False)

__repr__()

Return repr(self).

close()

closes the connection to the remote machine; all paths and programs will become defunct

path(*parts)
A factory for RemotePaths. Usage: p = rem.path("/usr", "lib", "python2.7")

which(progname)
Looks up a program in the PATH. If the program is not found, raises CommandNotFound

Parameters
progname – The program’s name. Note that if underscores (_) are present in the name, and
the exact name is not found, they will be replaced in turn by hyphens (-) then periods (.), and
the name will be looked up again for each alternative

Returns
A RemotePath

__getitem__(cmd)
Returns a Command object representing the given program. cmd can be a string or a RemotePath ; if it is
a path, a command representing this path will be returned; otherwise, the program name will be looked up
in the system’s PATH (using which). Usage:

r_ls = rem["ls"]

property python

A command that represents the default remote python interpreter

session(isatty=False, *, new_session=False)
Creates a new ShellSession object; this invokes the user’s shell on the remote machine and executes
commands on it over stdin/stdout/stderr

84 Chapter 5. API Reference

https://github.com/tomerfiliba/plumbum/issues/48

Plumbum Shell Combinators Documentation, Release 1.8.2

download(src, dst)
Downloads a remote file/directory (src) to a local destination (dst). srcmust be a string or a RemotePath
pointing to this remote machine, and dst must be a string or a LocalPath

upload(src, dst)
Uploads a local file/directory (src) to a remote destination (dst). src must be a string or a LocalPath,
and dst must be a string or a RemotePath pointing to this remote machine

popen(args, **kwargs)
Spawns the given command on the remote machine, returning a Popen-like object; do not use this method
directly, unless you need “low-level” control on the remote process

list_processes()

Returns information about all running processes (on POSIX systems: using ps)

New in version 1.3.

pgrep(pattern)
Process grep: return information about all processes whose command-line args match the given regex
pattern

tempdir()

A context manager that creates a remote temporary directory, which is removed when the context exits

class plumbum.machines.ssh_machine.SshTunnel(session, lport, dport, reverse)
An object representing an SSH tunnel (created by SshMachine.tunnel)

__init__(session, lport, dport, reverse)

__repr__()

Return repr(self).

close()

Closes(terminates) the tunnel

property lport

Tunneled port or socket on the local machine.

property dport

Tunneled port or socket on the remote machine.

property reverse

Represents if the tunnel is a reverse tunnel.

class plumbum.machines.ssh_machine.SshMachine(host, user=None, port=None, keyfile=None,
ssh_command=None, scp_command=None,
ssh_opts=(), scp_opts=(), password=None,
encoding='utf8', connect_timeout=10,
new_session=False)

An implementation of remote machine over SSH. Invoking a remote command translates to invoking it over
SSH

with SshMachine("yourhostname") as rem:
r_ls = rem["ls"]
r_ls is the remote `ls`
executing r_ls() translates to `ssh yourhostname ls`

5.3. Package plumbum.machines 85

Plumbum Shell Combinators Documentation, Release 1.8.2

Parameters

• host – the host name to connect to (SSH server)

• user – the user to connect as (if None, the default will be used)

• port – the server’s port (if None, the default will be used)

• keyfile – the path to the identity file (if None, the default will be used)

• ssh_command – the ssh command to use; this has to be a Command object; if None, the
default ssh client will be used.

• scp_command – the scp command to use; this has to be a Command object; if None, the
default scp program will be used.

• ssh_opts – any additional options for ssh (a list of strings)

• scp_opts – any additional options for scp (a list of strings)

• password – the password to use; requires sshpass be installed. Cannot be used in conjunc-
tion with ssh_command or scp_command (will be ignored). NOTE: THIS IS A SECURITY
RISK!

• encoding – the remote machine’s encoding (defaults to UTF8)

• connect_timeout – specify a connection timeout (the time until shell prompt is seen). The
default is 10 seconds. Set to None to disable

• new_session – whether or not to start the background session as a new session leader (set-
sid). This will prevent it from being killed on Ctrl+C (SIGINT)

__init__(host, user=None, port=None, keyfile=None, ssh_command=None, scp_command=None,
ssh_opts=(), scp_opts=(), password=None, encoding='utf8', connect_timeout=10,
new_session=False)

__str__()

Return str(self).

popen(args, ssh_opts=(), env=None, cwd=None, **kwargs)
Spawns the given command on the remote machine, returning a Popen-like object; do not use this method
directly, unless you need “low-level” control on the remote process

nohup(command)
Runs the given command using nohup and redirects std handles, allowing the command to run “detached”
from its controlling TTY or parent. Does not return anything. Depreciated (use command.nohup or dae-
monic_popen).

daemonic_popen(command, cwd='.', stdout=None, stderr=None, append=True)
Runs the given command using nohup and redirects std handles, allowing the command to run “detached”
from its controlling TTY or parent. Does not return anything.

New in version 1.6.0.

session(isatty=False, new_session=False)
Creates a new ShellSession object; this invokes the user’s shell on the remote machine and executes
commands on it over stdin/stdout/stderr

tunnel(lport, dport, lhost='localhost', dhost='localhost', connect_timeout=5, reverse=False)
Creates an SSH tunnel from the TCP port (lport) of the local machine (lhost, defaults to "localhost",
but it can be any IP you can bind()) to the remote TCP port (dport) of the destination machine (dhost,
defaults to "localhost", which means this remote machine). This function also supports Unix sockets, in

86 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

which case the local socket should be passed in as lport and the local bind address should be None. The
same can be done for a remote socket, by following the same pattern with dport and dhost. The returned
SshTunnel object can be used as a context-manager.

The more conventional use case is the following:

+---------+ +---------+
| Your | | Remote |
| Machine | | Machine |
+----o----+ +---- ----+

| ^
| |

lport dport
| |
______SSH TUNNEL____/

(secure)

Here, you wish to communicate safely between port lport of your machine and port dport of the remote
machine. Communication is tunneled over SSH, so the connection is authenticated and encrypted.

The more general case is shown below (where dport != "localhost"):

+---------+ +-------------+ +-------------+
| Your | | Remote | | Destination |
| Machine | | Machine | | Machine |
+----o----+ +---- ----o---+ +---- --------+

| ^ | ^
| | | |

lhost:lport | | dhost:dport
| | | |
_____SSH TUNNEL_____/ _____SOCKET____/

(secure) (not secure)

Usage:

rem = SshMachine("megazord")

with rem.tunnel(1234, "/var/lib/mysql/mysql.sock", dhost=None):
sock = socket.socket()
sock.connect(("localhost", 1234))
sock is now tunneled to the MySQL socket on megazord

download(src, dst)
Downloads a remote file/directory (src) to a local destination (dst). srcmust be a string or a RemotePath
pointing to this remote machine, and dst must be a string or a LocalPath

upload(src, dst)
Uploads a local file/directory (src) to a remote destination (dst). src must be a string or a LocalPath,
and dst must be a string or a RemotePath pointing to this remote machine

class plumbum.machines.ssh_machine.PuttyMachine(host, user=None, port=None, keyfile=None,
ssh_command=None, scp_command=None,
ssh_opts=(), scp_opts=(), encoding='utf8',
connect_timeout=10, new_session=False)

PuTTY-flavored SSH connection. The programs plink and pscp are expected to be in the path (or you may
provide your own ssh_command and scp_command)

5.3. Package plumbum.machines 87

Plumbum Shell Combinators Documentation, Release 1.8.2

Arguments are the same as for plumbum.machines.remote.SshMachine

__init__(host, user=None, port=None, keyfile=None, ssh_command=None, scp_command=None,
ssh_opts=(), scp_opts=(), encoding='utf8', connect_timeout=10, new_session=False)

__str__()

Return str(self).

session(isatty=False, new_session=False)
Creates a new ShellSession object; this invokes the user’s shell on the remote machine and executes
commands on it over stdin/stdout/stderr

class plumbum.machines.paramiko_machine.ParamikoPopen(argv, stdin, stdout, stderr, encoding,
stdin_file=None, stdout_file=None,
stderr_file=None)

__init__(argv, stdin, stdout, stderr, encoding, stdin_file=None, stdout_file=None, stderr_file=None)

class plumbum.machines.paramiko_machine.ParamikoMachine(host, user=None, port=None,
password=None, keyfile=None,
load_system_host_keys=True,
missing_host_policy=None,
encoding='utf8', look_for_keys=None,
connect_timeout=None, keep_alive=0,
gss_auth=False, gss_kex=None,
gss_deleg_creds=None, gss_host=None,
get_pty=False,
load_system_ssh_config=False)

An implementation of remote machine over Paramiko (a Python implementation of openSSH2 client/server).
Invoking a remote command translates to invoking it over SSH

with ParamikoMachine("yourhostname") as rem:
r_ls = rem["ls"]
r_ls is the remote `ls`
executing r_ls() is equivalent to `ssh yourhostname ls`, only without
spawning a new ssh client

Parameters

• host – the host name to connect to (SSH server)

• user – the user to connect as (if None, the default will be used)

• port – the server’s port (if None, the default will be used)

• password – the user’s password (if a password-based authentication is to be performed) (if
None, key-based authentication will be used)

• keyfile – the path to the identity file (if None, the default will be used)

• load_system_host_keys – whether or not to load the system’s host keys (from /etc/
ssh and ~/.ssh). The default is True, which means Paramiko behaves much like the ssh
command-line client

• missing_host_policy – the value passed to the underlying
set_missing_host_key_policy of the client. The default is None, which means
set_missing_host_key_policy is not invoked and paramiko’s default behavior (reject)
is employed

88 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

• encoding – the remote machine’s encoding (defaults to UTF8)

• look_for_keys – set to False to disable searching for discoverable private key files in ~/.
ssh

• connect_timeout – timeout for TCP connection

Note: If Paramiko 1.15 or above is installed, can use GSS_API authentication

Parameters

• gss_auth (bool) – True if you want to use GSS-API authentication

• gss_kex (bool) – Perform GSS-API Key Exchange and user authentication

• gss_deleg_creds (bool) – Delegate GSS-API client credentials or not

• gss_host (str) – The targets name in the kerberos database. default: hostname

• get_pty (bool) – Execute remote commands with allocated pseudo-tty. default: False

• load_system_ssh_config (bool) – read system SSH config for ProxyCommand config-
uration. default: False

class RemoteCommand(remote, executable, encoding='auto')

__or__(*_)
Creates a pipe with the other command

__gt__(*_)
Redirects the process’ stdout to the given file

__rshift__(*_)
Redirects the process’ stdout to the given file (appending)

__ge__(*_)
Redirects the process’ stderr to the given file

__lt__(*_)
Redirects the given file into the process’ stdin

__lshift__(*_)
Redirects the given data into the process’ stdin

__init__(host, user=None, port=None, password=None, keyfile=None, load_system_host_keys=True,
missing_host_policy=None, encoding='utf8', look_for_keys=None, connect_timeout=None,
keep_alive=0, gss_auth=False, gss_kex=None, gss_deleg_creds=None, gss_host=None,
get_pty=False, load_system_ssh_config=False)

__str__()

Return str(self).

close()

closes the connection to the remote machine; all paths and programs will become defunct

property sftp

Returns an SFTP client on top of the current SSH connection; it can be used to manipulate files directly,
much like an interactive FTP/SFTP session

5.3. Package plumbum.machines 89

Plumbum Shell Combinators Documentation, Release 1.8.2

session(isatty=False, term='vt100', width=80, height=24, *, new_session=False)
Creates a new ShellSession object; this invokes the user’s shell on the remote machine and executes
commands on it over stdin/stdout/stderr

popen(args, stdin=None, stdout=None, stderr=None, new_session=False, env=None, cwd=None)
Spawns the given command on the remote machine, returning a Popen-like object; do not use this method
directly, unless you need “low-level” control on the remote process

download(src, dst)
Downloads a remote file/directory (src) to a local destination (dst). srcmust be a string or a RemotePath
pointing to this remote machine, and dst must be a string or a LocalPath

upload(src, dst)
Uploads a local file/directory (src) to a remote destination (dst). src must be a string or a LocalPath,
and dst must be a string or a RemotePath pointing to this remote machine

connect_sock(dport, dhost='localhost', ipv6=False)
Returns a Paramiko Channel, connected to dhost:dport on the remote machine. The Channel behaves like
a regular socket; you can send and recv on it and the data will pass encrypted over SSH. Usage:

mach = ParamikoMachine("myhost")
sock = mach.connect_sock(12345)
data = sock.recv(100)
sock.send("foobar")
sock.close()

5.4 Package plumbum.path

class plumbum.path.base.FSUser(val, name=None)
A special object that represents a file-system user. It derives from int, so it behaves just like a number (uid/gid),
but also have a .name attribute that holds the string-name of the user, if given (otherwise None)

static __new__(cls, val, name=None)

class plumbum.path.base.Path

An abstraction over file system paths. This class is abstract, and the two implementations are LocalPath and
RemotePath .

__repr__()

Return repr(self).

__truediv__(other: Any)→ _PathImpl
Joins two paths

__getitem__(key)
Return self[key].

__floordiv__(expr)
Returns a (possibly empty) list of paths that matched the glob-pattern under this path

__iter__()

Iterate over the files in this directory

90 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

__eq__(other: object)→ bool
Return self==value.

__ne__(other)
Return self!=value.

__gt__(other)
Return self>value.

__ge__(other)
Return self>=value.

__lt__(other)
Return self<value.

__le__(other)
Return self<=value.

__hash__()

Return hash(self).

__fspath__()

Added for Python 3.6 support

__contains__(item)

Paths should support checking to see if an file or folder is in them.

up(count=1)
Go up in count directories (the default is 1)

walk(filter=<function Path.<lambda>>, dir_filter=<function Path.<lambda>>)
traverse all (recursive) sub-elements under this directory, that match the given filter. By default, the filter
accepts everything; you can provide a custom filter function that takes a path as an argument and returns a
boolean

Parameters

• filter – the filter (predicate function) for matching results. Only paths matching this
predicate are returned. Defaults to everything.

• dir_filter – the filter (predicate function) for matching directories. Only directories
matching this predicate are recursed into. Defaults to everything.

abstract property name: str

The basename component of this path

property basename

Included for compatibility with older Plumbum code

abstract property stem: str

The name without an extension, or the last component of the path

abstract property dirname: _PathImpl

The dirname component of this path

abstract property root: str

The root of the file tree (/ on Unix)

5.4. Package plumbum.path 91

Plumbum Shell Combinators Documentation, Release 1.8.2

abstract property drive: str

The drive letter (on Windows)

abstract property suffix: str

The suffix of this file

abstract property suffixes: List[str]

This is a list of all suffixes

abstract property uid: FSUser

The user that owns this path. The returned value is a FSUser object which behaves like an int (as expected
from uid), but it also has a .name attribute that holds the string-name of the user

abstract property gid: FSUser

The group that owns this path. The returned value is a FSUser object which behaves like an int (as
expected from gid), but it also has a .name attribute that holds the string-name of the group

abstract as_uri(scheme: str | None = None)→ str
Returns a universal resource identifier. Use scheme to force a scheme.

abstract join(*parts: Any)→ _PathImpl
Joins this path with any number of paths

abstract list()→ List[_PathImpl]
Returns the files in this directory

abstract iterdir()→ Iterable[_PathImpl]
Returns an iterator over the directory. Might be slightly faster on Python 3.5 than .list()

abstract is_dir()→ bool
Returns True if this path is a directory, False otherwise

isdir()

Included for compatibility with older Plumbum code

abstract is_file()→ bool
Returns True if this path is a regular file, False otherwise

isfile()→ bool
Included for compatibility with older Plumbum code

islink()

Included for compatibility with older Plumbum code

abstract is_symlink()→ bool
Returns True if this path is a symbolic link, False otherwise

abstract exists()→ bool
Returns True if this path exists, False otherwise

abstract stat()→ stat_result
Returns the os.stats for a file

abstract with_name(name: Any)→ _PathImpl
Returns a path with the name replaced

92 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

abstract with_suffix(suffix: str, depth: int | None = 1)→ _PathImpl
Returns a path with the suffix replaced. Up to last depth suffixes will be replaced. None will replace all
suffixes. If there are less than depth suffixes, this will replace all suffixes. .tar.gz is an example where
depth=2 or depth=None is useful

preferred_suffix(suffix)
Adds a suffix if one does not currently exist (otherwise, no change). Useful for loading files with a default
suffix

abstract glob(pattern: str | Iterable[str])→ List[_PathImpl]
Returns a (possibly empty) list of paths that matched the glob-pattern under this path

abstract delete()

Deletes this path (recursively, if a directory)

abstract move(dst)
Moves this path to a different location

rename(newname)
Renames this path to the new name (only the basename is changed)

abstract copy(dst, override=None)
Copies this path (recursively, if a directory) to the destination path “dst”. Raises TypeError if dst exists
and override is False. Will overwrite if override is True. Will silently fail to copy if override is None (the
default).

abstract mkdir(mode=511, parents=True, exist_ok=True)
Creates a directory at this path.

Parameters

• mode – Currently only implemented for local paths! Numeric mode to use for directory
creation, which may be ignored on some systems. The current implementation reproduces
the behavior of os.mkdir (i.e., the current umask is first masked out), but this may change
for remote paths. As with os.mkdir, it is recommended to call chmod() explicitly if you
need to be sure.

• parents – If this is true (the default), the directory’s parents will also be created if neces-
sary.

• exist_ok – If this is true (the default), no exception will be raised if the directory already
exists (otherwise OSError).

Note that the defaults for parents and exist_ok are the opposite of what they are in Python’s own
pathlib - this is to maintain backwards-compatibility with Plumbum’s behaviour from before they were
implemented.

abstract open(mode: str = 'r', *, encoding: str | None = None)→ IOBase
opens this path as a file

abstract read(encoding: str | None = None)→ str
returns the contents of this file as a str. By default the data is read as text, but you can specify the encoding,
e.g., 'latin1' or 'utf8'

abstract write(data: AnyStr, encoding: str | None = None)→ None
writes the given data to this file. By default the data is written as-is (either text or binary), but you can
specify the encoding, e.g., 'latin1' or 'utf8'

5.4. Package plumbum.path 93

Plumbum Shell Combinators Documentation, Release 1.8.2

abstract touch()

Update the access time. Creates an empty file if none exists.

abstract chown(owner=None, group=None, recursive=None)
Change ownership of this path.

Parameters

• owner – The owner to set (either uid or username), optional

• group – The group to set (either gid or groupname), optional

• recursive – whether to change ownership of all contained files and subdirectories. Only
meaningful when self is a directory. If None, the value will default to True if self is a
directory, False otherwise.

abstract chmod(mode)
Change the mode of path to the numeric mode.

Parameters
mode – file mode as for os.chmod

abstract access(mode: int | str = 0)→ bool
Test file existence or permission bits

Parameters
mode – a bitwise-or of access bits, or a string-representation thereof: 'f', 'x', 'r', 'w' for
os.F_OK, os.X_OK, os.R_OK, os.W_OK

abstract link(dst)
Creates a hard link from self to dst

Parameters
dst – the destination path

abstract symlink(dst)
Creates a symbolic link from self to dst

Parameters
dst – the destination path

abstract unlink()

Deletes a symbolic link

split(*_args, **_kargs)
Splits the path on directory separators, yielding a list of directories, e.g, "/var/log/messages" will yield
['var', 'log', 'messages'].

property parts

Splits the directory into parts, including the base directory, returns a tuple

relative_to(source)
Computes the “relative path” require to get from source to self. They satisfy the invariant source_path
+ (target_path - source_path) == target_path. For example:

/var/log/messages - /var/log/messages = []
/var/log/messages - /var = [log, messages]
/var/log/messages - / = [var, log, messages]
/var/log/messages - /var/tmp = [.., log, messages]

(continues on next page)

94 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

(continued from previous page)

/var/log/messages - /opt = [.., var, log, messages]
/var/log/messages - /opt/lib = [.., .., var, log, messages]

__sub__(other)
Same as self.relative_to(other)

resolve(strict=False)
Added to allow pathlib like syntax. Does nothing since Plumbum paths are always absolute. Does not
(currently) resolve symlinks.

property parents

Pathlib like sequence of ancestors

property parent

Pathlib like parent of the path.

__weakref__

list of weak references to the object (if defined)

class plumbum.path.base.RelativePath(parts)
Relative paths are the “delta” required to get from one path to another. Note that relative path do not point at
anything, and thus are not paths. Therefore they are system agnostic (but closed under addition) Paths are always
absolute and point at “something”, whether existent or not.

Relative paths are created by subtracting paths (Path.relative_to)

__init__(parts)

__str__()

Return str(self).

__repr__()

Return repr(self).

__eq__(other)
Return self==value.

__ne__(other)
Return self!=value.

__gt__(other)
Return self>value.

__ge__(other)
Return self>=value.

__lt__(other)
Return self<value.

__le__(other)
Return self<=value.

__hash__()

Return hash(self).

__weakref__

list of weak references to the object (if defined)

5.4. Package plumbum.path 95

Plumbum Shell Combinators Documentation, Release 1.8.2

class plumbum.path.local.LocalPath(*parts)
The class implementing local-machine paths

static __new__(cls, *parts)

property name

The basename component of this path

property dirname

The dirname component of this path

property suffix

The suffix of this file

property suffixes

This is a list of all suffixes

property uid

The user that owns this path. The returned value is a FSUser object which behaves like an int (as expected
from uid), but it also has a .name attribute that holds the string-name of the user

property gid

The group that owns this path. The returned value is a FSUser object which behaves like an int (as
expected from gid), but it also has a .name attribute that holds the string-name of the group

join(*others)
Joins this path with any number of paths

list()

Returns the files in this directory

iterdir()

Returns an iterator over the directory. Might be slightly faster on Python 3.5 than .list()

is_dir()

Returns True if this path is a directory, False otherwise

is_file()

Returns True if this path is a regular file, False otherwise

is_symlink()

Returns True if this path is a symbolic link, False otherwise

exists()

Returns True if this path exists, False otherwise

stat()

Returns the os.stats for a file

with_name(name)
Returns a path with the name replaced

property stem

The name without an extension, or the last component of the path

with_suffix(suffix, depth=1)
Returns a path with the suffix replaced. Up to last depth suffixes will be replaced. None will replace all
suffixes. If there are less than depth suffixes, this will replace all suffixes. .tar.gz is an example where
depth=2 or depth=None is useful

96 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

glob(pattern)
Returns a (possibly empty) list of paths that matched the glob-pattern under this path

delete()

Deletes this path (recursively, if a directory)

move(dst)
Moves this path to a different location

copy(dst, override=None)
Copies this path (recursively, if a directory) to the destination path “dst”. Raises TypeError if dst exists
and override is False. Will overwrite if override is True. Will silently fail to copy if override is None (the
default).

mkdir(mode=511, parents=True, exist_ok=True)
Creates a directory at this path.

Parameters

• mode – Currently only implemented for local paths! Numeric mode to use for directory
creation, which may be ignored on some systems. The current implementation reproduces
the behavior of os.mkdir (i.e., the current umask is first masked out), but this may change
for remote paths. As with os.mkdir, it is recommended to call chmod() explicitly if you
need to be sure.

• parents – If this is true (the default), the directory’s parents will also be created if neces-
sary.

• exist_ok – If this is true (the default), no exception will be raised if the directory already
exists (otherwise OSError).

Note that the defaults for parents and exist_ok are the opposite of what they are in Python’s own
pathlib - this is to maintain backwards-compatibility with Plumbum’s behaviour from before they were
implemented.

open(mode='r', encoding=None)
opens this path as a file

read(encoding=None, mode='r')
returns the contents of this file as a str. By default the data is read as text, but you can specify the encoding,
e.g., 'latin1' or 'utf8'

write(data, encoding=None, mode=None)
writes the given data to this file. By default the data is written as-is (either text or binary), but you can
specify the encoding, e.g., 'latin1' or 'utf8'

touch()

Update the access time. Creates an empty file if none exists.

chown(owner=None, group=None, recursive=None)
Change ownership of this path.

Parameters

• owner – The owner to set (either uid or username), optional

• group – The group to set (either gid or groupname), optional

• recursive – whether to change ownership of all contained files and subdirectories. Only
meaningful when self is a directory. If None, the value will default to True if self is a
directory, False otherwise.

5.4. Package plumbum.path 97

Plumbum Shell Combinators Documentation, Release 1.8.2

chmod(mode)
Change the mode of path to the numeric mode.

Parameters
mode – file mode as for os.chmod

access(mode=0)
Test file existence or permission bits

Parameters
mode – a bitwise-or of access bits, or a string-representation thereof: 'f', 'x', 'r', 'w' for
os.F_OK, os.X_OK, os.R_OK, os.W_OK

link(dst)
Creates a hard link from self to dst

Parameters
dst – the destination path

symlink(dst)
Creates a symbolic link from self to dst

Parameters
dst – the destination path

unlink()

Deletes a symbolic link

as_uri(scheme='file')
Returns a universal resource identifier. Use scheme to force a scheme.

property drive

The drive letter (on Windows)

property root

The root of the file tree (/ on Unix)

class plumbum.path.local.LocalWorkdir

Working directory manipulator

__hash__()

Return hash(self).

static __new__(cls)

chdir(newdir)
Changes the current working directory to the given one

Parameters
newdir – The destination director (a string or a LocalPath)

getpath()

Returns the current working directory as a LocalPath object

__call__(newdir)
A context manager used to chdir into a directory and then chdir back to the previous location; much like
pushd/popd.

Parameters
newdir – The destination directory (a string or a LocalPath)

98 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

class plumbum.path.remote.StatRes(tup)
POSIX-like stat result

__init__(tup)

__weakref__

list of weak references to the object (if defined)

class plumbum.path.remote.RemotePath(remote, *parts)
The class implementing remote-machine paths

static __new__(cls, remote, *parts)

property name

The basename component of this path

property dirname

The dirname component of this path

property suffix

The suffix of this file

property suffixes

This is a list of all suffixes

property uid

The user that owns this path. The returned value is a FSUser object which behaves like an int (as expected
from uid), but it also has a .name attribute that holds the string-name of the user

property gid

The group that owns this path. The returned value is a FSUser object which behaves like an int (as
expected from gid), but it also has a .name attribute that holds the string-name of the group

join(*parts)
Joins this path with any number of paths

list()

Returns the files in this directory

iterdir()

Returns an iterator over the directory. Might be slightly faster on Python 3.5 than .list()

is_dir()

Returns True if this path is a directory, False otherwise

is_file()

Returns True if this path is a regular file, False otherwise

is_symlink()

Returns True if this path is a symbolic link, False otherwise

exists()

Returns True if this path exists, False otherwise

stat()

Returns the os.stats for a file

5.4. Package plumbum.path 99

Plumbum Shell Combinators Documentation, Release 1.8.2

with_name(name)
Returns a path with the name replaced

with_suffix(suffix, depth=1)
Returns a path with the suffix replaced. Up to last depth suffixes will be replaced. None will replace all
suffixes. If there are less than depth suffixes, this will replace all suffixes. .tar.gz is an example where
depth=2 or depth=None is useful

glob(pattern)
Returns a (possibly empty) list of paths that matched the glob-pattern under this path

delete()

Deletes this path (recursively, if a directory)

unlink()

Deletes a symbolic link

move(dst)
Moves this path to a different location

copy(dst, override=False)
Copies this path (recursively, if a directory) to the destination path “dst”. Raises TypeError if dst exists
and override is False. Will overwrite if override is True. Will silently fail to copy if override is None (the
default).

mkdir(mode=None, parents=True, exist_ok=True)
Creates a directory at this path.

Parameters

• mode – Currently only implemented for local paths! Numeric mode to use for directory
creation, which may be ignored on some systems. The current implementation reproduces
the behavior of os.mkdir (i.e., the current umask is first masked out), but this may change
for remote paths. As with os.mkdir, it is recommended to call chmod() explicitly if you
need to be sure.

• parents – If this is true (the default), the directory’s parents will also be created if neces-
sary.

• exist_ok – If this is true (the default), no exception will be raised if the directory already
exists (otherwise OSError).

Note that the defaults for parents and exist_ok are the opposite of what they are in Python’s own
pathlib - this is to maintain backwards-compatibility with Plumbum’s behaviour from before they were
implemented.

read(encoding=None)
returns the contents of this file as a str. By default the data is read as text, but you can specify the encoding,
e.g., 'latin1' or 'utf8'

write(data, encoding=None)
writes the given data to this file. By default the data is written as-is (either text or binary), but you can
specify the encoding, e.g., 'latin1' or 'utf8'

touch()

Update the access time. Creates an empty file if none exists.

100 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

chown(owner=None, group=None, recursive=None)
Change ownership of this path.

Parameters

• owner – The owner to set (either uid or username), optional

• group – The group to set (either gid or groupname), optional

• recursive – whether to change ownership of all contained files and subdirectories. Only
meaningful when self is a directory. If None, the value will default to True if self is a
directory, False otherwise.

chmod(mode)
Change the mode of path to the numeric mode.

Parameters
mode – file mode as for os.chmod

access(mode=0)
Test file existence or permission bits

Parameters
mode – a bitwise-or of access bits, or a string-representation thereof: 'f', 'x', 'r', 'w' for
os.F_OK, os.X_OK, os.R_OK, os.W_OK

link(dst)
Creates a hard link from self to dst

Parameters
dst – the destination path

symlink(dst)
Creates a symbolic link from self to dst

Parameters
dst – the destination path

open(mode='r', bufsize=-1, *, encoding=None)
Opens this path as a file.

Only works for ParamikoMachine-associated paths for now.

as_uri(scheme='ssh')
Returns a universal resource identifier. Use scheme to force a scheme.

property stem

The name without an extension, or the last component of the path

property root

The root of the file tree (/ on Unix)

property drive

The drive letter (on Windows)

class plumbum.path.remote.RemoteWorkdir(remote)
Remote working directory manipulator

static __new__(cls, remote)

5.4. Package plumbum.path 101

Plumbum Shell Combinators Documentation, Release 1.8.2

__hash__()

Return hash(self).

chdir(newdir)
Changes the current working directory to the given one

getpath()

Returns the current working directory as a remote path <plumbum.path.remote.RemotePath> object

__call__(newdir)
A context manager used to chdir into a directory and then chdir back to the previous location; much like
pushd/popd.

Parameters
newdir – The destination director (a string or a RemotePath)

5.4.1 Utils

plumbum.path.utils.delete(*paths)
Deletes the given paths. The arguments can be either strings, local paths, remote paths, or iterables of
such. No error is raised if any of the paths does not exist (it is silently ignored)

plumbum.path.utils.move(src, dst)
Moves the source path onto the destination path; src and dst can be either strings, LocalPaths or RemotePath ;
any combination of the three will work.

New in version 1.3: src can also be a list of strings/paths, in which case dst must not exist or be a directory.

plumbum.path.utils.copy(src, dst)
Copy (recursively) the source path onto the destination path; src and dst can be either strings, LocalPaths or
RemotePath ; any combination of the three will work.

New in version 1.3: src can also be a list of strings/paths, in which case dst must not exist or be a directory.

plumbum.path.utils.gui_open(filename)
This selects the proper gui open function. This can also be achieved with webbrowser, but that is not supported.

5.5 Package plumbum.fs

File system utilities

Atomic file operations

class plumbum.fs.atomic.AtomicFile(filename, ignore_deletion=False)
Atomic file operations implemented using file-system advisory locks (flock on POSIX, LockFile on Win-
dows).

Note: On Linux, the manpage says flock might have issues with NFS mounts. You should take this into
account.

New in version 1.3.

reopen()

Close and reopen the file; useful when the file was deleted from the file system by a different process

102 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

locked(blocking=True)
A context manager that locks the file; this function is reentrant by the thread currently holding the lock.

Parameters
blocking – if True, the call will block until we can grab the file system lock. if False, the
call may fail immediately with the underlying exception (IOError or WindowsError)

delete()

Atomically delete the file (holds the lock while doing it)

read_atomic()

Atomically read the entire file

read_shared()

Read the file without holding the lock

write_atomic(data)
Writes the given data atomically to the file. Note that it overwrites the entire file; write_atomic("foo")
followed by write_atomic("bar") will result in only "bar".

class plumbum.fs.atomic.AtomicCounterFile(atomicfile, initial=0)
An atomic counter based on AtomicFile. Each time you call next(), it will atomically read and increment the
counter’s value, returning its previous value

Example:

acf = AtomicCounterFile.open("/some/file")
print(acf.next()) # e.g., 7
print(acf.next()) # 8
print(acf.next()) # 9

New in version 1.3.

classmethod open(filename)
Shortcut for AtomicCounterFile(AtomicFile(filename))

reset(value=None)
Reset the counter’s value to the one given. If None, it will default to the initial value provided to the
constructor

next()

Read and increment the counter, returning its previous value

exception plumbum.fs.atomic.PidFileTaken(msg, pid)
This exception is raised when PidFile.acquire fails to lock the pid file. Note that it derives from SystemExit, so
unless explicitly handled, it will terminate the process cleanly

class plumbum.fs.atomic.PidFile(filename)
A PID file is a file that’s locked by some process from the moment it starts until it dies (the OS will clear the
lock when the process exits). It is used to prevent two instances of the same process (normally a daemon) from
running concurrently. The PID file holds its process’ PID, so you know who’s holding it.

New in version 1.3.

acquire()

Attempt to acquire the PID file. If it’s already locked, raises PidFileTaken. You should normally acquire
the file as early as possible when the program starts

5.5. Package plumbum.fs 103

Plumbum Shell Combinators Documentation, Release 1.8.2

release()

Release the PID file (should only happen when the program terminates)

class plumbum.fs.mounts.MountEntry(dev, point, fstype, options)
Represents a mount entry (device file, mount point and file system type)

plumbum.fs.mounts.mount_table()

returns the system’s current mount table (a list of MountEntry objects)

plumbum.fs.mounts.mounted(fs)
Indicates if a the given filesystem (device file or mount point) is currently mounted

5.6 Package plumbum.colors

Factory for styles. Holds font styles, FG and BG objects representing colors, and imitates the FG ColorFactory to a
large degree.

plumbum.colors.__dir__()

Default dir() implementation.

plumbum.colors.__format__(format_spec, /)
Default object formatter.

plumbum.colors.__init_subclass__()

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

plumbum.colors.__new__(*args, **kwargs)
Create and return a new object. See help(type) for accurate signature.

plumbum.colors.__reduce__()

Helper for pickle.

plumbum.colors.__reduce_ex__(protocol, /)
Helper for pickle.

plumbum.colors.__sizeof__()

Size of object in memory, in bytes.

plumbum.colors.__subclasshook__()

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented.
If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and
the outcome is cached).

104 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

5.6.1 plumbum.colorlib

The ansicolor object provides bg and fg to access colors, and attributes like bold and underlined text. It also provides
reset to recover the normal font.

class plumbum.colorlib.ANSIStyle(attributes=None, fgcolor=None, bgcolor=None, reset=False)
This is a subclass for ANSI styles. Use it to get color on sys.stdout tty terminals on posix systems.

Set use_color = True/False if you want to control color for anything using this Style.

__str__()

Base Style does not implement a __str__ representation. This is the one required method of a subclass.

exception plumbum.colorlib.ColorNotFound

Thrown when a color is not valid for a particular method.

__weakref__

list of weak references to the object (if defined)

class plumbum.colorlib.HTMLStyle(attributes=None, fgcolor=None, bgcolor=None, reset=False)
This was meant to be a demo of subclassing Style, but actually can be a handy way to quickly color html text.

end = '
\n'

The endline character. Override if needed in subclasses.

__str__()

Base Style does not implement a __str__ representation. This is the one required method of a subclass.

class plumbum.colorlib.Style(attributes=None, fgcolor=None, bgcolor=None, reset=False)
This class allows the color changes to be called directly to write them to stdout, [] calls to wrap colors (or the
.wrap method) and can be called in a with statement.

color_class

alias of Color

end = '\n'

The endline character. Override if needed in subclasses.

ANSI_REG = re.compile('\x1b\\[([\\d;]+)m')

The regular expression that finds ansi codes in a string.

property stdout

This property will allow custom, class level control of stdout. It will use current sys.stdout if set to None
(default). Unfortunately, it only works on an instance..

__init__(attributes=None, fgcolor=None, bgcolor=None, reset=False)
This is usually initialized from a factory.

invert()

This resets current color(s) and flips the value of all attributes present

property reset

Shortcut to access reset as a property.

__copy__()

Copy is supported, will make dictionary and colors unique.

__invert__()

This allows ~color.

5.6. Package plumbum.colors 105

Plumbum Shell Combinators Documentation, Release 1.8.2

__add__(other)
Adding two matching Styles results in a new style with the combination of both. Adding with a string
results in the string concatenation of a style.

Addition is non-commutative, with the rightmost Style property being taken if both have the same property.
(Not safe)

__radd__(other)
This only gets called if the string is on the left side. (Not safe)

wrap(wrap_this)
Wrap a string in this style and its inverse.

__and__(other)
This class supports color & color2 syntax, and color & "String" syntax too.

__rand__(other)
This class supports "String:" & color syntax.

__ror__(other)
Support for “String” | color syntax

__or__(other)
This class supports color | color2 syntax. It also supports "color | "String" syntax too.

__call__()

This is a shortcut to print color immediately to the stdout. (Not safe)

now()

Immediately writes color to stdout. (Not safe)

print(*printables, **kargs)
This acts like print; will print that argument to stdout wrapped in Style with the same syntax as the print
function in 3.4.

print_(*printables, **kargs)
DEPRECATED: Shortcut from classic Python 2

__getitem__(wrapped)
The [] syntax is supported for wrapping

__enter__()

Context manager support

__exit__(_type, _value, _traceback)
Runs even if exception occurred, does not catch it.

property ansi_codes

Generates the full ANSI code sequence for a Style

property ansi_sequence

This is the string ANSI sequence.

__repr__()

Return repr(self).

__eq__(other)
Equality is true only if reset, or if attributes, fg, and bg match.

106 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

abstract __str__()

Base Style does not implement a __str__ representation. This is the one required method of a subclass.

classmethod from_ansi(ansi_string, filter_resets=False)
This generated a style from an ansi string. Will ignore resets if filter_resets is True.

add_ansi(sequence, filter_resets=False)
Adds a sequence of ansi numbers to the class. Will ignore resets if filter_resets is True.

classmethod string_filter_ansi(colored_string)
Filters out colors in a string, returning only the name.

classmethod string_contains_colors(colored_string)
Checks to see if a string contains colors.

to_representation(rep)
This converts both colors to a specific representation

limit_representation(rep)
This only converts if true representation is higher

property basic

The color in the 8 color representation.

property simple

The color in the 16 color representation.

property full

The color in the 256 color representation.

property true

The color in the true color representation.

__hash__ = None

class plumbum.colorlib.StyleFactory(style)
Factory for styles. Holds font styles, FG and BG objects representing colors, and imitates the FG ColorFactory
to a large degree.

__init__(style)

property use_color

Shortcut for setting color usage on Style

from_ansi(ansi_sequence)
Calling this is a shortcut for creating a style from an ANSI sequence.

property stdout

This is a shortcut for getting stdout from a class without an instance.

get_colors_from_string(color='')
Sets color based on string, use . or space for separator, and numbers, fg/bg, htmlcodes, etc all accepted (as
strings).

filter(colored_string)
Filters out colors in a string, returning only the name.

5.6. Package plumbum.colors 107

Plumbum Shell Combinators Documentation, Release 1.8.2

contains_colors(colored_string)
Checks to see if a string contains colors.

extract(colored_string)
Gets colors from an ansi string, returns those colors

plumbum.colorlib.main()

Color changing script entry. Call using python3 -m plumbum.colors, will reset if no arguments given.

5.6.2 plumbum.colorlib.styles

This file provides two classes, Color and Style.

Color is rarely used directly, but merely provides the workhorse for finding and manipulating colors.

With the Style class, any color can be directly called or given to a with statement.

class plumbum.colorlib.styles.Color(r_or_color=None, g=None, b=None, fg=True)
Loaded with (r, g, b, fg) or (color, fg=fg). The second signature is a short cut and will try full and
hex loading.

This class stores the idea of a color, rather than a specific implementation. It provides as many different tools for
representations as possible, and can be subclassed to add more representations, though that should not be needed
for most situations. .from_ class methods provide quick ways to create colors given different representations.
You will not usually interact with this class.

Possible colors:

reset = Color() # The reset color by default
background_reset = Color(fg=False) # Can be a background color
blue = Color(0,0,255) # Red, Green, Blue
green = Color.from_full("green") # Case insensitive name, from large colorset
red = Color.from_full(1) # Color number
white = Color.from_html("#FFFFFF") # HTML supported
yellow = Color.from_simple("red") # Simple colorset

The attributes are:

reset

True it this is a reset color (following attributes don’t matter if True)

rgb

The red/green/blue tuple for this color

simple

If true will stay to 16 color mode.

number

The color number given the mode, closest to rgb if not rgb not exact, gives position of closest name.

fg

This is a foreground color if True. Background color if False.

__init__(r_or_color=None, g=None, b=None, fg=True)
This works from color values, or tries to load non-simple ones.

108 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

number

Number of the original color, or closest color

representation

0 for off, 1 for 8 colors, 2 for 16 colors, 3 for 256 colors, 4 for true color

exact

This is false if the named color does not match the real color

classmethod from_simple(color, fg=True)
Creates a color from simple name or color number

classmethod from_full(color, fg=True)
Creates a color from full name or color number

classmethod from_hex(color, fg=True)
Converts #123456 values to colors.

property name

The (closest) name of the current color

property name_camelcase

The camelcase name of the color

__repr__()

This class has a smart representation that shows name and color (if not unique).

__eq__(other)
Reset colors are equal, otherwise rgb have to match.

property ansi_sequence

This is the ansi sequence as a string, ready to use.

property ansi_codes

This is the full ANSI code, can be reset, simple, 256, or full color.

property hex_code

This is the hex code of the current color, html style notation.

__str__()

This just prints it’s simple name

to_representation(val)
Converts a color to any representation

limit_representation(val)
Only converts if val is lower than representation

__hash__ = None

class plumbum.colorlib.styles.Style(attributes=None, fgcolor=None, bgcolor=None, reset=False)
This class allows the color changes to be called directly to write them to stdout, [] calls to wrap colors (or the
.wrap method) and can be called in a with statement.

color_class

The class of color to use. Never hardcode Color call when writing a Style method.

alias of Color

5.6. Package plumbum.colors 109

Plumbum Shell Combinators Documentation, Release 1.8.2

end = '\n'

The endline character. Override if needed in subclasses.

ANSI_REG = re.compile('\x1b\\[([\\d;]+)m')

The regular expression that finds ansi codes in a string.

property stdout

This property will allow custom, class level control of stdout. It will use current sys.stdout if set to None
(default). Unfortunately, it only works on an instance..

__init__(attributes=None, fgcolor=None, bgcolor=None, reset=False)
This is usually initialized from a factory.

invert()

This resets current color(s) and flips the value of all attributes present

property reset

Shortcut to access reset as a property.

__copy__()

Copy is supported, will make dictionary and colors unique.

__invert__()

This allows ~color.

__add__(other)
Adding two matching Styles results in a new style with the combination of both. Adding with a string
results in the string concatenation of a style.

Addition is non-commutative, with the rightmost Style property being taken if both have the same property.
(Not safe)

__radd__(other)
This only gets called if the string is on the left side. (Not safe)

wrap(wrap_this)
Wrap a string in this style and its inverse.

__and__(other)
This class supports color & color2 syntax, and color & "String" syntax too.

__rand__(other)
This class supports "String:" & color syntax.

__ror__(other)
Support for “String” | color syntax

__or__(other)
This class supports color | color2 syntax. It also supports "color | "String" syntax too.

__call__()

This is a shortcut to print color immediately to the stdout. (Not safe)

now()

Immediately writes color to stdout. (Not safe)

print(*printables, **kargs)
This acts like print; will print that argument to stdout wrapped in Style with the same syntax as the print
function in 3.4.

110 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

print_(*printables, **kargs)
DEPRECATED: Shortcut from classic Python 2

__getitem__(wrapped)
The [] syntax is supported for wrapping

__enter__()

Context manager support

__exit__(_type, _value, _traceback)
Runs even if exception occurred, does not catch it.

property ansi_codes

Generates the full ANSI code sequence for a Style

property ansi_sequence

This is the string ANSI sequence.

__repr__()

Return repr(self).

__eq__(other)
Equality is true only if reset, or if attributes, fg, and bg match.

abstract __str__()

Base Style does not implement a __str__ representation. This is the one required method of a subclass.

classmethod from_ansi(ansi_string, filter_resets=False)
This generated a style from an ansi string. Will ignore resets if filter_resets is True.

add_ansi(sequence, filter_resets=False)
Adds a sequence of ansi numbers to the class. Will ignore resets if filter_resets is True.

classmethod string_filter_ansi(colored_string)
Filters out colors in a string, returning only the name.

classmethod string_contains_colors(colored_string)
Checks to see if a string contains colors.

to_representation(rep)
This converts both colors to a specific representation

limit_representation(rep)
This only converts if true representation is higher

property basic

The color in the 8 color representation.

property simple

The color in the 16 color representation.

property full

The color in the 256 color representation.

property true

The color in the true color representation.

__hash__ = None

5.6. Package plumbum.colors 111

Plumbum Shell Combinators Documentation, Release 1.8.2

class plumbum.colorlib.styles.ANSIStyle(attributes=None, fgcolor=None, bgcolor=None, reset=False)
This is a subclass for ANSI styles. Use it to get color on sys.stdout tty terminals on posix systems.

Set use_color = True/False if you want to control color for anything using this Style.

__str__()

Base Style does not implement a __str__ representation. This is the one required method of a subclass.

class plumbum.colorlib.styles.HTMLStyle(attributes=None, fgcolor=None, bgcolor=None, reset=False)
This was meant to be a demo of subclassing Style, but actually can be a handy way to quickly color html text.

end = '
\n'

The endline character. Override if needed in subclasses.

__str__()

Base Style does not implement a __str__ representation. This is the one required method of a subclass.

exception plumbum.colorlib.styles.ColorNotFound

Thrown when a color is not valid for a particular method.

__weakref__

list of weak references to the object (if defined)

exception plumbum.colorlib.styles.AttributeNotFound

Similar to color not found, only for attributes.

__weakref__

list of weak references to the object (if defined)

5.6.3 plumbum.colorlib.factories

Color-related factories. They produce Styles.

class plumbum.colorlib.factories.ColorFactory(fg, style)
This creates color names given fg = True/False. It usually will be called as part of a StyleFactory.

__init__(fg, style)

__getattr__(item)

Full color names work, but do not populate __dir__.

full(name)
Gets the style for a color, using standard name procedure: either full color name, html code, or number.

simple(name)
Return the extended color scheme color for a value or name.

rgb(r, g=None, b=None)
Return the extended color scheme color for a value.

hex(hexcode)
Return the extended color scheme color for a value.

ansi(ansiseq)
Make a style from an ansi text sequence

112 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

__getitem__(val)
Shortcut to provide way to access colors numerically or by slice. If end <= 16, will stay to simple ANSI
version.

__call__(val_or_r=None, g=None, b=None)
Shortcut to provide way to access colors.

__iter__()

Iterates through all colors in extended colorset.

__invert__()

Allows clearing a color with ~

__enter__()

This will reset the color on leaving the with statement.

__exit__(_type: Any, _value: Any, _traceback: Any)→ None
This resets a FG/BG color or all styles, due to different definition of RESET for the factories.

__repr__()

Simple representation of the class by name.

__weakref__

list of weak references to the object (if defined)

class plumbum.colorlib.factories.StyleFactory(style)
Factory for styles. Holds font styles, FG and BG objects representing colors, and imitates the FG ColorFactory
to a large degree.

__init__(style)

property use_color

Shortcut for setting color usage on Style

from_ansi(ansi_sequence)
Calling this is a shortcut for creating a style from an ANSI sequence.

property stdout

This is a shortcut for getting stdout from a class without an instance.

get_colors_from_string(color='')
Sets color based on string, use . or space for separator, and numbers, fg/bg, htmlcodes, etc all accepted (as
strings).

filter(colored_string)
Filters out colors in a string, returning only the name.

contains_colors(colored_string)
Checks to see if a string contains colors.

extract(colored_string)
Gets colors from an ansi string, returns those colors

5.6. Package plumbum.colors 113

Plumbum Shell Combinators Documentation, Release 1.8.2

5.6.4 plumbum.colorlib.names

Names for the standard and extended color set. Extended set is similar to vim wiki, colored, etc. Colors based on
wikipedia.

You can access the index of the colors with names.index(name). You can access the rgb values with
r=int(html[n][1:3],16), etc.

plumbum.colorlib.names.color_codes_simple = [0, 1, 2, 3, 4, 5, 6, 7, 60, 61, 62, 63, 64,
65, 66, 67]

Simple colors, remember that reset is #9, second half is non as common.

class plumbum.colorlib.names.FindNearest(r: int, g: int, b: int)
This is a class for finding the nearest color given rgb values. Different find methods are available.

__init__(r: int, g: int, b: int)→ None

only_basic()

This will only return the first 8 colors! Breaks the colorspace into cubes, returns color

all_slow(color_slice: slice = slice(None, None, None))→ int
This is a slow way to find the nearest color.

only_colorblock()→ int
This finds the nearest color based on block system, only works for 17-232 color values.

only_simple()→ int
Finds the simple color-block color.

only_grey()→ int
Finds the greyscale color.

all_fast()→ int
Runs roughly 8 times faster than the slow version.

__weakref__

list of weak references to the object (if defined)

plumbum.colorlib.names.from_html(color: str)→ Tuple[int, int, int]
Convert html hex code to rgb.

plumbum.colorlib.names.to_html(r, g, b)
Convert rgb to html hex code.

5.7 Colorlib design

New in version 1.6.

The purpose of this document is to describe the system that plumbum.colors implements. This system was designed to
be flexible and to allow implementing new color backends. Hopefully this document will allow future work on colorlib
to be as simple as possible.

Note: Enabling color

plumbum.colors tries to guess the color output settings of your system. You can force the use of color globally by
setting colors.use_color=True See 256 Color Support for more options.

114 Chapter 5. API Reference

http://vim.wikia.com/wiki/Xterm256_color_names_for_console_Vim
https://pypi.python.org/pypi/colored
https://en.wikipedia.org/wiki/ANSI_escape_code#Colors

Plumbum Shell Combinators Documentation, Release 1.8.2

5.7.1 Generating colors

Styles are accessed through the colors object, which is an instance of a StyleFactory. The colors object is actually
an imitation module that wraps plumbum.colorlib.ansicolors with module-like access. Thus, things like from
plumbum.colors.bg import red work also. The library actually lives in plumbum.colorlib.

Style Factory

The colors object has the following available objects:

fg and bg
The foreground and background colors, reset to default with colors.fg.reset or ~colors.fg and
likewise for bg. These are ColorFactory instances.

bold, dim, underline, italics, reverse, strikeout, and hidden
All the ANSI modifiers are available, as well as their negations, such as ~colors.bold or colors.
bold.reset, etc. (These are generated automatically based on the Style attached to the factory.)

reset
The global reset will restore all properties at once.

do_nothing
Does nothing at all, but otherwise acts like any Style object. It is its own inverse. Useful for cli
properties.

The colors object can be used in a with statement, which resets all styles on leaving the statement body. Although
factories do support some of the same methods as a Style, their primary purpose is to generate Styles. The colors object
has a use_color property that can be set to force the use of color. A stdout property is provided to make changing
the output of color statement easier. A colors.from_ansi(code) method allows you to create a Style from any ansi
sequence, even complex or combined ones.

Color Factories

The colors.fg and colors.bg are ColorFactory’s. In fact, the colors object itself acts exactly like the colors.fg
object, with the exception of the properties listed above.

Named foreground colors are available directly as methods. The first 16 primary colors, black, red, green, yellow,
blue, magenta, cyan, etc, as well as reset, are available. All 256 color names are available, but do not populate
factory directly, so that auto-completion gives reasonable results. You can also access colors using strings and do
colors[string]. Capitalization, underscores, and spaces (for strings) will be ignored.

You can also access colors numerically with colors(n) or colors[n] with the extended 256 color codes. The former
will default to simple versions of colors for the first 16 values. The later notation can also be used to slice. Full hex
codes can be used, too. If no match is found, these will be the true 24 bit color value.

The fg and bg also can be put in with statements, and they will restore the foreground and background color only,
respectively.

colors.rgb(r,g,b) will create a color from an input red, green, and blue values (integers from 0-255). colors.
rgb(code) will allow you to input an html style hex sequence. These work on fg and bg too. The repr of styles is
smart and will show you the closest color to the one you selected if you didn’t exactly select a color through RGB.

5.7. Colorlib design 115

Plumbum Shell Combinators Documentation, Release 1.8.2

5.7.2 Style manipulations

Safe color manipulations refer to changes that reset themselves at some point. Unsafe manipulations must be manually
reset, and can leave your terminal color in an unreadable state if you forget to reset the color or encounter an exception.
If you do get the color unset on a terminal, the following, typed into the command line, will restore it:

$ python3 -m plumbum.colors

This also supports command line access to unsafe color manipulations, such as

$ python3 -m plumbum.colors blue
$ python3 -m plumbum.colors bg red
$ python3 -m plumbum.colors fg 123
$ python3 -m plumbum.colors bg reset
$ python3 -m plumbum.colors underline

You can use any path or number available as a style.

Unsafe Manipulation

Styles have two unsafe operations: Concatenation (with + and a string) and calling .now() without arguments (directly
calling a style without arguments is also a shortcut for .now()). These two operations do not restore normal color to
the terminal by themselves. To protect their use, you should always use a context manager around any unsafe operation.

An example of the usage of unsafe colors manipulations inside a context manager:

from plumbum import colors

with colors:
colors.fg.red.now()
print('This is in red')
colors.green.now()
print('This is green ' + colors.underline + 'and now also underlined!')
print('Underlined' + colors.underline.reset + ' and not underlined but still red')

print('This is completely restored, even if an exception is thrown!')

Output:

We can use colors instead of colors.fg for foreground colors. If we had used colors.fg as the context manager,
then non-foreground properties, such as colors.underline or colors.bg.yellow, would not have reset those prop-
erties. Each attribute, as well as fg, bg, and colors all have inverses in the ANSI standard. They are accessed with ~
or .reset, and can be used to manually make these operations safer, but there is a better way.

116 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

Safe Manipulation

All other operations are safe; they restore the color automatically. The first, and hopefully already obvious one, is using
a Style rather than a colors or colors.fg object in a with statement. This will set the color (using sys.stdout by
default) to that color, and restore color on leaving.

The second method is to manually wrap a string. This can be done with color.wrap("string") or
color["string"]. These produce strings that can be further manipulated or printed.

Finally, you can also print a color to stdout directly using color.print("string"). This has the same syntax as the
print function.

An example of safe manipulations:

colors.fg.yellow('This is yellow', end='')
print(' And this is normal again.')
with colors.red:

print('Red color!')
with colors.bold:

print("This is red and bold.")
print("Not bold, but still red.")

print("Not red color or bold.")
print((colors.magenta & colors.bold)["This is bold and colorful!"], "And this is not.")

Output:

Style Combinations

You can combine styles with & and they will create a new combined Style object. Colors will not be “summed” or oth-
erwise combined; the rightmost color will be used (this matches the expected effect of applying the Styles individually
to the strings). However, combined Styles are intelligent and know how to reset just the properties that they contain.
As you have seen in the example above, the combined style (colors.magenta & colors.bold) can be used in any
way a normal Style can. Since wrapping is done with |, the Python order of operations causes styles to be combined
first, then wrapping is done last.

5.7.3 256 Color Support

While this library supports full 24 bit colors through escape sequences, the library has special support for the “full”
256 colorset through numbers, names or HEX html codes. Even if you use 24 bit color, the closest name is dis-
played in the repr. You can access the colors as as colors.fg.Light_Blue, colors.fg.lightblue, colors.
fg[12], colors.fg('Light_Blue'), colors.fg('LightBlue'), or colors.fg('#0000FF'). You can also it-
erate or slice the colors, colors.fg, or colors.bg objects. Slicing even intelligently downgrades to the simple
version of the codes if it is within the first 16 elements. The supported colors are:

If you want to enforce a specific representation, you can use .basic (8 color), .simple (16 color), .full (256 color),
or .true (24 bit color) on a Style, and the colors in that Style will conform to the output representation and name of
the best match color. The internal RGB colors are remembered, so this is a non-destructive operation.

To limit the use of color to one of these styles, set colors.use_color to 1 for 8 colors, 2 for 16 colors, 3 for 256
colors, or 4 for true color. It will be guessed based on your system on initialisation.

5.7. Colorlib design 117

Plumbum Shell Combinators Documentation, Release 1.8.2

5.7.4 The Classes

The library consists of three primary classes, the Color class, the Style class, and the StyleFactory class. The
following portion of this document is primarily dealing with the working of the system, and is meant to facilitate
extensions or work on the system.

The Color class provides meaning to the concept of color, and can provide a variety of representations for any color.
It can be initialised from r,g,b values, or hex codes, 256 color names, or the simple color names via classmethods. If
initialized without arguments, it is the reset color. It also takes an fg True/False argument to indicate which color it is.
You probably will not be interacting with the Color class directly, and you probably will not need to subclass it, though
new extensions to the representations it can produce are welcome.

The Style class hold two colors and a dictionary of attributes. It is the workhorse of the system and is what is produced
by the colors factory. It holds Color as .color_class, which can be overridden by subclasses (again, this usually
is not needed). To create a color representation, you need to subclass Style and give it a working __str__ definition.
ANSIStyle is derived from Style in this way.

The factories, ColorFactory and StyleFactory, are factory classes that are meant to provide simple access to 1
style Style classes. To use, you need to initialize an object of StyleFactory with your intended Style. For example,
colors is created by:

colors = StyleFactory(ANSIStyle)

Subclassing Style

For example, if you wanted to create an HTMLStyle and HTMLcolors, you could do:

class HTMLStyle(Style):
attribute_names = dict(bold='b', li='li', code='code')
end = '
\n'

def __str__(self):
result = ''

if self.bg and not self.bg.reset:
result += f''

if self.fg and not self.fg.reset:
result += f''

for attr in sorted(self.attributes):
if self.attributes[attr]:

result += '<' + self.attribute_names[attr] + '>'

for attr in reversed(sorted(self.attributes)):
if not self.attributes[attr]:

result += '</' + self.attribute_names[attr].split()[0] + '>'
if self.fg and self.fg.reset:

result += ''
if self.bg and self.bg.reset:

result += ''

return result

htmlcolors = StyleFactory(HTMLStyle)

118 Chapter 5. API Reference

Plumbum Shell Combinators Documentation, Release 1.8.2

This doesn’t support global resets, since that’s not how HTML works, but otherwise is a working implementation. This
is an example of how easy it is to add support for other output formats.

An example of usage:

>>> htmlcolors.bold & htmlcolors.red | "This is colored text"
'This is colored text'

The above color table can be generated with:

for color in htmlcolors:
htmlcolors.li(

"■" | color,
color.fg.hex_code | htmlcolors.code,
color.fg.name_camelcase)

Note: HTMLStyle is implemented in the library, as well, with the htmlcolors object available in plumbum.
colorlib. It was used to create the colored output in this document, with small changes because colors.reset
cannot be supported with HTML.

5.7.5 See Also

• colored Another library with 256 color support

• colorama A library that supports colored text on Windows,
can be combined with Plumbum.colors (if you force use_color, doesn’t support all extended colors)

Note: The local object is an instance of a machine.

5.7. Colorlib design 119

https://pypi.python.org/pypi/colored
https://pypi.python.org/pypi/colorama

Plumbum Shell Combinators Documentation, Release 1.8.2

120 Chapter 5. API Reference

CHAPTER

SIX

ABOUT

The original purpose of Plumbum was to enable local and remote program execution with ease, assuming nothing
fancier than good-old SSH. On top of this, a file-system abstraction layer was devised, so that working with local and
remote files would be seamless.

I’ve toyed with this idea for some time now, but it wasn’t until I had to write build scripts for a project I’ve been working
on that I decided I’ve had it with shell scripts and it’s time to make it happen. Plumbum was born from the scraps of
the Path class, which I wrote for the aforementioned build system, and the SshContext and SshTunnel classes that
I wrote for RPyC. When I combined the two with shell combinators (because shell scripts do have an edge there) the
magic happened and here we are.

121

https://rpyc.readthedocs.io/

Plumbum Shell Combinators Documentation, Release 1.8.2

122 Chapter 6. About

CHAPTER

SEVEN

CREDITS

The project has been inspired by PBS (now called sh) of Andrew Moffat, and has borrowed some of his ideas (namely
treating programs like functions and the nice trick for importing commands). However, I felt there was too much magic
going on in PBS, and that the syntax wasn’t what I had in mind when I came to write shell-like programs. I contacted
Andrew about these issues, but he wanted to keep PBS this way. Other than that, the two libraries go in different
directions, where Plumbum attempts to provide a more wholesome approach.

Plumbum also pays tribute to Rotem Yaari who suggested a library code-named pyplatform for that very purpose,
but which had never materialized.

123

http://amoffat.github.io/sh/
https://github.com/amoffat
https://github.com/vmalloc/

Plumbum Shell Combinators Documentation, Release 1.8.2

124 Chapter 7. Credits

PYTHON MODULE INDEX

p
plumbum.cli.application, 55
plumbum.cli.progress, 63
plumbum.cli.switches, 57
plumbum.cli.terminal, 61
plumbum.cli.termsize, 63
plumbum.colorlib, 105
plumbum.colorlib.factories, 112
plumbum.colorlib.names, 114
plumbum.colorlib.styles, 108
plumbum.colors, 104
plumbum.commands.base, 64
plumbum.commands.daemons, 72
plumbum.commands.modifiers, 72
plumbum.commands.processes, 74
plumbum.fs.atomic, 102
plumbum.fs.mounts, 104
plumbum.machines.env, 75
plumbum.machines.local, 77
plumbum.machines.paramiko_machine, 88
plumbum.machines.remote, 82
plumbum.machines.session, 80
plumbum.machines.ssh_machine, 85
plumbum.path.base, 90
plumbum.path.local, 95
plumbum.path.remote, 98
plumbum.path.utils, 102

125

Plumbum Shell Combinators Documentation, Release 1.8.2

126 Python Module Index

INDEX

Symbols
__add__() (plumbum.colorlib.Style method), 105
__add__() (plumbum.colorlib.styles.Style method), 110
__and__() (plumbum.colorlib.Style method), 106
__and__() (plumbum.colorlib.styles.Style method), 110
__call__() (plumbum.colorlib.Style method), 106
__call__() (plumbum.colorlib.factories.ColorFactory

method), 113
__call__() (plumbum.colorlib.styles.Style method), 110
__call__() (plumbum.commands.base.BaseCommand

method), 66
__call__() (plumbum.machines.env.BaseEnv method),

76
__call__() (plumbum.path.local.LocalWorkdir

method), 98
__call__() (plumbum.path.remote.RemoteWorkdir

method), 102
__contains__() (plumbum.machines.env.BaseEnv

method), 76
__contains__() (plumbum.machines.env.EnvPathList

method), 75
__contains__() (plumbum.machines.local.LocalMachine

method), 79
__contains__() (plumbum.path.base.Path method), 91
__copy__() (plumbum.colorlib.Style method), 105
__copy__() (plumbum.colorlib.styles.Style method), 110
__delitem__() (plumbum.machines.env.BaseEnv

method), 76
__delitem__() (plumbum.machines.remote.RemoteEnv

method), 82
__dir__() (in module plumbum.colors), 104
__enter__() (plumbum.colorlib.Style method), 106
__enter__() (plumbum.colorlib.factories.ColorFactory

method), 113
__enter__() (plumbum.colorlib.styles.Style method),

111
__eq__() (plumbum.colorlib.Style method), 106
__eq__() (plumbum.colorlib.styles.Color method), 109
__eq__() (plumbum.colorlib.styles.Style method), 111
__eq__() (plumbum.path.base.Path method), 90
__eq__() (plumbum.path.base.RelativePath method), 95
__exit__() (plumbum.colorlib.Style method), 106

__exit__() (plumbum.colorlib.factories.ColorFactory
method), 113

__exit__() (plumbum.colorlib.styles.Style method), 111
__floordiv__() (plumbum.path.base.Path method), 90
__format__() (in module plumbum.colors), 104
__fspath__() (plumbum.path.base.Path method), 91
__ge__() (plumbum.commands.base.BaseCommand

method), 66
__ge__() (plumbum.machines.paramiko_machine.ParamikoMachine.RemoteCommand

method), 89
__ge__() (plumbum.path.base.Path method), 91
__ge__() (plumbum.path.base.RelativePath method), 95
__getattr__() (plumbum.colorlib.factories.ColorFactory

method), 112
__getitem__() (plumbum.colorlib.Style method), 106
__getitem__() (plumbum.colorlib.factories.ColorFactory

method), 112
__getitem__() (plumbum.colorlib.styles.Style method),

111
__getitem__() (plumbum.commands.base.BaseCommand

method), 66
__getitem__() (plumbum.machines.env.BaseEnv

method), 76
__getitem__() (plumbum.machines.local.LocalMachine

method), 79
__getitem__() (plumbum.machines.remote.BaseRemoteMachine

method), 84
__getitem__() (plumbum.path.base.Path method), 90
__gt__() (plumbum.commands.base.BaseCommand

method), 65
__gt__() (plumbum.machines.paramiko_machine.ParamikoMachine.RemoteCommand

method), 89
__gt__() (plumbum.path.base.Path method), 91
__gt__() (plumbum.path.base.RelativePath method), 95
__hash__ (plumbum.colorlib.Style attribute), 107
__hash__ (plumbum.colorlib.styles.Color attribute), 109
__hash__ (plumbum.colorlib.styles.Style attribute), 111
__hash__() (plumbum.machines.env.BaseEnv method),

76
__hash__() (plumbum.path.base.Path method), 91
__hash__() (plumbum.path.base.RelativePath method),

95

127

Plumbum Shell Combinators Documentation, Release 1.8.2

__hash__() (plumbum.path.local.LocalWorkdir
method), 98

__hash__() (plumbum.path.remote.RemoteWorkdir
method), 101

__init__() (plumbum.colorlib.Style method), 105
__init__() (plumbum.colorlib.StyleFactory method),

107
__init__() (plumbum.colorlib.factories.ColorFactory

method), 112
__init__() (plumbum.colorlib.factories.StyleFactory

method), 113
__init__() (plumbum.colorlib.names.FindNearest

method), 114
__init__() (plumbum.colorlib.styles.Color method),

108
__init__() (plumbum.colorlib.styles.Style method), 110
__init__() (plumbum.commands.base.BaseRedirection

method), 69
__init__() (plumbum.commands.base.BoundCommand

method), 69
__init__() (plumbum.commands.base.BoundEnvCommand

method), 70
__init__() (plumbum.commands.base.ConcreteCommand

method), 71
__init__() (plumbum.commands.base.Pipeline

method), 68
__init__() (plumbum.commands.base.StdinDataRedirection

method), 71
__init__() (plumbum.commands.modifiers.Future

method), 72
__init__() (plumbum.commands.processes.CommandNotFound

method), 74
__init__() (plumbum.commands.processes.ProcessExecutionError

method), 74
__init__() (plumbum.commands.processes.ProcessLineTimedOut

method), 74
__init__() (plumbum.commands.processes.ProcessTimedOut

method), 74
__init__() (plumbum.machines.env.BaseEnv method),

76
__init__() (plumbum.machines.env.EnvPathList

method), 75
__init__() (plumbum.machines.local.LocalCommand

method), 78
__init__() (plumbum.machines.local.LocalEnv

method), 77
__init__() (plumbum.machines.local.LocalMachine

method), 78
__init__() (plumbum.machines.local.PlumbumLocalPopen

method), 77
__init__() (plumbum.machines.paramiko_machine.ParamikoMachine

method), 89
__init__() (plumbum.machines.paramiko_machine.ParamikoPopen

method), 88

__init__() (plumbum.machines.remote.BaseRemoteMachine
method), 84

__init__() (plumbum.machines.remote.BaseRemoteMachine.RemoteCommand
method), 83

__init__() (plumbum.machines.remote.RemoteCommand
method), 83

__init__() (plumbum.machines.remote.RemoteEnv
method), 82

__init__() (plumbum.machines.session.MarkedPipe
method), 80

__init__() (plumbum.machines.session.SessionPopen
method), 81

__init__() (plumbum.machines.session.ShellSession
method), 81

__init__() (plumbum.machines.ssh_machine.PuttyMachine
method), 88

__init__() (plumbum.machines.ssh_machine.SshMachine
method), 86

__init__() (plumbum.machines.ssh_machine.SshTunnel
method), 85

__init__() (plumbum.path.base.RelativePath method),
95

__init__() (plumbum.path.remote.StatRes method), 99
__init_subclass__() (in module plumbum.colors),

104
__invert__() (plumbum.colorlib.Style method), 105
__invert__() (plumbum.colorlib.factories.ColorFactory

method), 113
__invert__() (plumbum.colorlib.styles.Style method),

110
__iter__() (plumbum.colorlib.factories.ColorFactory

method), 113
__iter__() (plumbum.machines.env.BaseEnv method),

76
__iter__() (plumbum.path.base.Path method), 90
__le__() (plumbum.path.base.Path method), 91
__le__() (plumbum.path.base.RelativePath method), 95
__len__() (plumbum.machines.env.BaseEnv method),

76
__lshift__() (plumbum.commands.base.BaseCommand

method), 66
__lshift__() (plumbum.machines.paramiko_machine.ParamikoMachine.RemoteCommand

method), 89
__lt__() (plumbum.commands.base.BaseCommand

method), 66
__lt__() (plumbum.machines.paramiko_machine.ParamikoMachine.RemoteCommand

method), 89
__lt__() (plumbum.path.base.Path method), 91
__lt__() (plumbum.path.base.RelativePath method), 95
__ne__() (plumbum.path.base.Path method), 91
__ne__() (plumbum.path.base.RelativePath method), 95
__new__() (in module plumbum.colors), 104
__new__() (plumbum.path.base.FSUser static method),

90

128 Index

Plumbum Shell Combinators Documentation, Release 1.8.2

__new__() (plumbum.path.local.LocalPath static
method), 96

__new__() (plumbum.path.local.LocalWorkdir static
method), 98

__new__() (plumbum.path.remote.RemotePath static
method), 99

__new__() (plumbum.path.remote.RemoteWorkdir static
method), 101

__or__() (plumbum.colorlib.Style method), 106
__or__() (plumbum.colorlib.styles.Style method), 110
__or__() (plumbum.commands.base.BaseCommand

method), 65
__or__() (plumbum.machines.paramiko_machine.ParamikoMachine.RemoteCommand

method), 89
__radd__() (plumbum.colorlib.Style method), 106
__radd__() (plumbum.colorlib.styles.Style method), 110
__rand__() (plumbum.colorlib.Style method), 106
__rand__() (plumbum.colorlib.styles.Style method), 110
__rand__() (plumbum.commands.modifiers.PipeToLoggerMixin

method), 73
__reduce__() (in module plumbum.colors), 104
__reduce_ex__() (in module plumbum.colors), 104
__repr__() (plumbum.colorlib.Style method), 106
__repr__() (plumbum.colorlib.factories.ColorFactory

method), 113
__repr__() (plumbum.colorlib.styles.Color method),

109
__repr__() (plumbum.colorlib.styles.Style method), 111
__repr__() (plumbum.commands.base.BaseRedirection

method), 69
__repr__() (plumbum.commands.base.BoundCommand

method), 69
__repr__() (plumbum.commands.base.BoundEnvCommand

method), 70
__repr__() (plumbum.commands.base.ConcreteCommand

method), 71
__repr__() (plumbum.commands.base.Pipeline

method), 68
__repr__() (plumbum.commands.modifiers.Future

method), 72
__repr__() (plumbum.machines.remote.BaseRemoteMachine

method), 84
__repr__() (plumbum.machines.remote.BaseRemoteMachine.RemoteCommand

method), 83
__repr__() (plumbum.machines.remote.RemoteCommand

method), 83
__repr__() (plumbum.machines.ssh_machine.SshTunnel

method), 85
__repr__() (plumbum.path.base.Path method), 90
__repr__() (plumbum.path.base.RelativePath method),

95
__ror__() (plumbum.colorlib.Style method), 106
__ror__() (plumbum.colorlib.styles.Style method), 110
__rshift__() (plumbum.commands.base.BaseCommand

method), 66
__rshift__() (plumbum.machines.paramiko_machine.ParamikoMachine.RemoteCommand

method), 89
__setitem__() (plumbum.machines.env.BaseEnv

method), 76
__setitem__() (plumbum.machines.remote.RemoteEnv

method), 82
__sizeof__() (in module plumbum.colors), 104
__str__() (plumbum.colorlib.ANSIStyle method), 105
__str__() (plumbum.colorlib.HTMLStyle method), 105
__str__() (plumbum.colorlib.Style method), 106
__str__() (plumbum.colorlib.styles.ANSIStyle method),

112
__str__() (plumbum.colorlib.styles.Color method), 109
__str__() (plumbum.colorlib.styles.HTMLStyle

method), 112
__str__() (plumbum.colorlib.styles.Style method), 111
__str__() (plumbum.commands.base.BaseCommand

method), 65
__str__() (plumbum.commands.base.ConcreteCommand

method), 71
__str__() (plumbum.commands.processes.ProcessExecutionError

method), 74
__str__() (plumbum.machines.paramiko_machine.ParamikoMachine

method), 89
__str__() (plumbum.machines.ssh_machine.PuttyMachine

method), 88
__str__() (plumbum.machines.ssh_machine.SshMachine

method), 86
__str__() (plumbum.path.base.RelativePath method),

95
__sub__() (plumbum.path.base.Path method), 95
__subclasshook__() (in module plumbum.colors), 104
__truediv__() (plumbum.path.base.Path method), 90
__weakref__ (plumbum.colorlib.ColorNotFound at-

tribute), 105
__weakref__ (plumbum.colorlib.factories.ColorFactory

attribute), 113
__weakref__ (plumbum.colorlib.names.FindNearest at-

tribute), 114
__weakref__ (plumbum.colorlib.styles.AttributeNotFound

attribute), 112
__weakref__ (plumbum.colorlib.styles.ColorNotFound

attribute), 112
__weakref__ (plumbum.commands.base.RedirectionError

attribute), 65
__weakref__ (plumbum.commands.modifiers.Future at-

tribute), 72
__weakref__ (plumbum.commands.modifiers.PipeToLoggerMixin

attribute), 73
__weakref__ (plumbum.commands.processes.CommandNotFound

attribute), 74
__weakref__ (plumbum.commands.processes.ProcessExecutionError

attribute), 74

Index 129

Plumbum Shell Combinators Documentation, Release 1.8.2

__weakref__ (plumbum.commands.processes.ProcessLineTimedOut
attribute), 74

__weakref__ (plumbum.commands.processes.ProcessTimedOut
attribute), 74

__weakref__ (plumbum.machines.remote.ClosedRemoteMachine
attribute), 83

__weakref__ (plumbum.machines.session.ShellSession
attribute), 81

__weakref__ (plumbum.machines.session.ShellSessionError
attribute), 80

__weakref__ (plumbum.path.base.Path attribute), 95
__weakref__ (plumbum.path.base.RelativePath at-

tribute), 95
__weakref__ (plumbum.path.remote.StatRes attribute),

99

A
access() (plumbum.path.base.Path method), 94
access() (plumbum.path.local.LocalPath method), 98
access() (plumbum.path.remote.RemotePath method),

101
acquire() (plumbum.fs.atomic.PidFile method), 103
add_ansi() (plumbum.colorlib.Style method), 107
add_ansi() (plumbum.colorlib.styles.Style method), 111
alive() (plumbum.machines.session.ShellSession

method), 81
all_fast() (plumbum.colorlib.names.FindNearest

method), 114
all_slow() (plumbum.colorlib.names.FindNearest

method), 114
ansi() (plumbum.colorlib.factories.ColorFactory

method), 112
ansi_codes (plumbum.colorlib.Style property), 106
ansi_codes (plumbum.colorlib.styles.Color property),

109
ansi_codes (plumbum.colorlib.styles.Style property),

111
ANSI_REG (plumbum.colorlib.Style attribute), 105
ANSI_REG (plumbum.colorlib.styles.Style attribute), 110
ansi_sequence (plumbum.colorlib.Style property), 106
ansi_sequence (plumbum.colorlib.styles.Color prop-

erty), 109
ansi_sequence (plumbum.colorlib.styles.Style prop-

erty), 111
ANSIStyle (class in plumbum.colorlib), 105
ANSIStyle (class in plumbum.colorlib.styles), 111
append() (plumbum.machines.env.EnvPathList method),

75
AppendingStdoutRedirection (class in

plumbum.commands.base), 71
Application (class in plumbum.cli.application), 55
as_root() (plumbum.machines.local.LocalMachine

method), 80
as_uri() (plumbum.path.base.Path method), 92

as_uri() (plumbum.path.local.LocalPath method), 98
as_uri() (plumbum.path.remote.RemotePath method),

101
as_user() (plumbum.machines.local.LocalMachine

method), 79
ask() (in module plumbum.cli.terminal), 61
AtomicCounterFile (class in plumbum.fs.atomic), 103
AtomicFile (class in plumbum.fs.atomic), 102
AttributeNotFound, 112
autocomplete() (plumbum.cli.application.Application

class method), 56
autoswitch() (in module plumbum.cli.switches), 59

B
BaseCommand (class in plumbum.commands.base), 65
BaseEnv (class in plumbum.machines.env), 76
basename (plumbum.path.base.Path property), 91
BaseRedirection (class in plumbum.commands.base),

69
BaseRemoteMachine (class in

plumbum.machines.remote), 83
BaseRemoteMachine.RemoteCommand (class in

plumbum.machines.remote), 83
basic (plumbum.colorlib.Style property), 107
basic (plumbum.colorlib.styles.Style property), 111
bgrun() (plumbum.commands.base.BaseCommand

method), 67
bound_command() (plumbum.commands.base.BaseCommand

method), 66
BoundCommand (class in plumbum.commands.base), 69
BoundEnvCommand (class in plumbum.commands.base),

70

C
chdir() (plumbum.path.local.LocalWorkdir method), 98
chdir() (plumbum.path.remote.RemoteWorkdir

method), 102
chmod() (plumbum.path.base.Path method), 94
chmod() (plumbum.path.local.LocalPath method), 98
chmod() (plumbum.path.remote.RemotePath method),

101
choices() (plumbum.cli.switches.Range method), 61
choices() (plumbum.cli.switches.Set method), 61
choices() (plumbum.cli.switches.Validator method), 60
choose() (in module plumbum.cli.terminal), 62
chown() (plumbum.path.base.Path method), 94
chown() (plumbum.path.local.LocalPath method), 97
chown() (plumbum.path.remote.RemotePath method),

100
cleanup() (plumbum.cli.application.Application

method), 57
clear() (plumbum.machines.env.BaseEnv method), 76
close() (plumbum.machines.paramiko_machine.ParamikoMachine

method), 89

130 Index

Plumbum Shell Combinators Documentation, Release 1.8.2

close() (plumbum.machines.remote.BaseRemoteMachine
method), 84

close() (plumbum.machines.session.MarkedPipe
method), 80

close() (plumbum.machines.session.ShellSession
method), 81

close() (plumbum.machines.ssh_machine.SshTunnel
method), 85

ClosedRemoteMachine, 83
Color (class in plumbum.colorlib.styles), 108
Color.fg (in module plumbum.colorlib.styles), 108
Color.number (in module plumbum.colorlib.styles), 108
Color.reset (in module plumbum.colorlib.styles), 108
Color.rgb (in module plumbum.colorlib.styles), 108
Color.simple (in module plumbum.colorlib.styles), 108
color_class (plumbum.colorlib.Style attribute), 105
color_class (plumbum.colorlib.styles.Style attribute),

109
color_codes_simple (in module

plumbum.colorlib.names), 114
ColorFactory (class in plumbum.colorlib.factories),

112
ColorNotFound, 105, 112
CommandNotFound, 74
communicate() (plumbum.machines.session.SessionPopen

method), 81
ConcreteCommand (class in plumbum.commands.base),

70
connect_sock() (plumbum.machines.paramiko_machine.ParamikoMachine

method), 90
contains_colors() (plumbum.colorlib.factories.StyleFactory

method), 113
contains_colors() (plumbum.colorlib.StyleFactory

method), 107
copy() (in module plumbum.path.utils), 102
copy() (plumbum.path.base.Path method), 93
copy() (plumbum.path.local.LocalPath method), 97
copy() (plumbum.path.remote.RemotePath method), 100
CountOf (class in plumbum.cli.switches), 60

D
daemonic_popen() (plumbum.machines.local.LocalMachine

method), 79
daemonic_popen() (plumbum.machines.ssh_machine.SshMachine

method), 86
delete() (in module plumbum.path.utils), 102
delete() (plumbum.fs.atomic.AtomicFile method), 103
delete() (plumbum.path.base.Path method), 93
delete() (plumbum.path.local.LocalPath method), 97
delete() (plumbum.path.remote.RemotePath method),

100
dirname (plumbum.path.base.Path property), 91
dirname (plumbum.path.local.LocalPath property), 96

dirname (plumbum.path.remote.RemotePath property),
99

display() (plumbum.cli.progress.Progress method), 64
display() (plumbum.cli.progress.ProgressBase

method), 63
display() (plumbum.cli.progress.ProgressIPy method),

64
display() (plumbum.cli.terminal.Progress method), 63
done() (plumbum.cli.progress.Progress method), 64
done() (plumbum.cli.progress.ProgressBase method), 63
done() (plumbum.cli.progress.ProgressIPy method), 64
done() (plumbum.cli.terminal.Progress method), 62
download() (plumbum.machines.paramiko_machine.ParamikoMachine

method), 90
download() (plumbum.machines.remote.BaseRemoteMachine

method), 84
download() (plumbum.machines.ssh_machine.SshMachine

method), 87
dport (plumbum.machines.ssh_machine.SshTunnel prop-

erty), 85
drive (plumbum.path.base.Path property), 91
drive (plumbum.path.local.LocalPath property), 98
drive (plumbum.path.remote.RemotePath property), 101

E
end (plumbum.colorlib.HTMLStyle attribute), 105
end (plumbum.colorlib.Style attribute), 105
end (plumbum.colorlib.styles.HTMLStyle attribute), 112
end (plumbum.colorlib.styles.Style attribute), 109
EnvPathList (class in plumbum.machines.env), 75
exact (plumbum.colorlib.styles.Color attribute), 109
exists() (plumbum.path.base.Path method), 92
exists() (plumbum.path.local.LocalPath method), 96
exists() (plumbum.path.remote.RemotePath method),

99
expand() (plumbum.machines.local.LocalEnv method),

77
expand() (plumbum.machines.remote.RemoteEnv

method), 82
expanduser() (plumbum.machines.local.LocalEnv

method), 78
expanduser() (plumbum.machines.remote.RemoteEnv

method), 82
extend() (plumbum.machines.env.EnvPathList method),

75
extract() (plumbum.colorlib.factories.StyleFactory

method), 113
extract() (plumbum.colorlib.StyleFactory method),

108

F
filter() (plumbum.colorlib.factories.StyleFactory

method), 113
filter() (plumbum.colorlib.StyleFactory method), 107

Index 131

Plumbum Shell Combinators Documentation, Release 1.8.2

FindNearest (class in plumbum.colorlib.names), 114
Flag (class in plumbum.cli.switches), 59
formulate() (plumbum.commands.base.BaseCommand

method), 66
formulate() (plumbum.commands.base.BaseRedirection

method), 69
formulate() (plumbum.commands.base.BoundCommand

method), 69
formulate() (plumbum.commands.base.BoundEnvCommand

method), 70
formulate() (plumbum.commands.base.ConcreteCommand

method), 71
formulate() (plumbum.commands.base.Pipeline

method), 68
formulate() (plumbum.commands.base.StdinDataRedirection

method), 71
from_ansi() (plumbum.colorlib.factories.StyleFactory

method), 113
from_ansi() (plumbum.colorlib.Style class method),

107
from_ansi() (plumbum.colorlib.StyleFactory method),

107
from_ansi() (plumbum.colorlib.styles.Style class

method), 111
from_full() (plumbum.colorlib.styles.Color class

method), 109
from_hex() (plumbum.colorlib.styles.Color class

method), 109
from_html() (in module plumbum.colorlib.names), 114
from_simple() (plumbum.colorlib.styles.Color class

method), 109
FSUser (class in plumbum.path.base), 90
full (plumbum.colorlib.Style property), 107
full (plumbum.colorlib.styles.Style property), 111
full() (plumbum.colorlib.factories.ColorFactory

method), 112
Future (class in plumbum.commands.modifiers), 72

G
get() (plumbum.machines.env.BaseEnv method), 76
get_colors_from_string()

(plumbum.colorlib.factories.StyleFactory
method), 113

get_colors_from_string()
(plumbum.colorlib.StyleFactory method),
107

get_terminal_size() (in module
plumbum.cli.terminal), 62

get_terminal_size() (in module
plumbum.cli.termsize), 63

getdelta() (plumbum.machines.remote.RemoteEnv
method), 83

getdict() (plumbum.machines.env.BaseEnv method),
77

getpath() (plumbum.path.local.LocalWorkdir method),
98

getpath() (plumbum.path.remote.RemoteWorkdir
method), 102

gid (plumbum.path.base.Path property), 92
gid (plumbum.path.local.LocalPath property), 96
gid (plumbum.path.remote.RemotePath property), 99
glob() (plumbum.path.base.Path method), 93
glob() (plumbum.path.local.LocalPath method), 96
glob() (plumbum.path.remote.RemotePath method), 100
gui_open() (in module plumbum.path.utils), 102

H
help() (plumbum.cli.application.Application method),

57
helpall() (plumbum.cli.application.Application

method), 57
hex() (plumbum.colorlib.factories.ColorFactory

method), 112
hex_code (plumbum.colorlib.styles.Color property), 109
home (plumbum.machines.env.BaseEnv property), 77
HostPublicKeyUnknown, 80
HTMLStyle (class in plumbum.colorlib), 105
HTMLStyle (class in plumbum.colorlib.styles), 112

I
IncorrectLogin, 80
increment() (plumbum.cli.progress.ProgressBase

method), 63
index() (plumbum.machines.env.EnvPathList method),

75
insert() (plumbum.machines.env.EnvPathList method),

75
invert() (plumbum.colorlib.Style method), 105
invert() (plumbum.colorlib.styles.Style method), 110
invoke() (plumbum.cli.application.Application class

method), 57
is_dir() (plumbum.path.base.Path method), 92
is_dir() (plumbum.path.local.LocalPath method), 96
is_dir() (plumbum.path.remote.RemotePath method),

99
is_file() (plumbum.path.base.Path method), 92
is_file() (plumbum.path.local.LocalPath method), 96
is_file() (plumbum.path.remote.RemotePath method),

99
is_symlink() (plumbum.path.base.Path method), 92
is_symlink() (plumbum.path.local.LocalPath method),

96
is_symlink() (plumbum.path.remote.RemotePath

method), 99
isdir() (plumbum.path.base.Path method), 92
isfile() (plumbum.path.base.Path method), 92
islink() (plumbum.path.base.Path method), 92
items() (plumbum.machines.env.BaseEnv method), 76

132 Index

Plumbum Shell Combinators Documentation, Release 1.8.2

iter_lines() (in module plumbum.commands.base), 64
iter_lines() (in module

plumbum.commands.processes), 74
iter_lines() (plumbum.machines.local.PlumbumLocalPopen

method), 77
iterdir() (plumbum.path.base.Path method), 92
iterdir() (plumbum.path.local.LocalPath method), 96
iterdir() (plumbum.path.remote.RemotePath method),

99

J
join() (plumbum.path.base.Path method), 92
join() (plumbum.path.local.LocalPath method), 96
join() (plumbum.path.remote.RemotePath method), 99

K
keys() (plumbum.machines.env.BaseEnv method), 76

L
limit_representation() (plumbum.colorlib.Style

method), 107
limit_representation()

(plumbum.colorlib.styles.Color method),
109

limit_representation()
(plumbum.colorlib.styles.Style method), 111

link() (plumbum.path.base.Path method), 94
link() (plumbum.path.local.LocalPath method), 98
link() (plumbum.path.remote.RemotePath method), 101
list() (plumbum.path.base.Path method), 92
list() (plumbum.path.local.LocalPath method), 96
list() (plumbum.path.remote.RemotePath method), 99
list_processes() (plumbum.machines.local.LocalMachine

method), 79
list_processes() (plumbum.machines.remote.BaseRemoteMachine

method), 85
local (in module plumbum.machines.local), 80
LocalCommand (class in plumbum.machines.local), 78
LocalEnv (class in plumbum.machines.local), 77
LocalMachine (class in plumbum.machines.local), 78
LocalPath (class in plumbum.path.local), 95
LocalWorkdir (class in plumbum.path.local), 98
locked() (plumbum.fs.atomic.AtomicFile method), 102
lport (plumbum.machines.ssh_machine.SshTunnel prop-

erty), 85

M
main() (in module plumbum.colorlib), 108
main() (plumbum.cli.application.Application method),

57
MarkedPipe (class in plumbum.machines.session), 80
MissingArgument, 57
MissingMandatorySwitch, 57

mkdir() (plumbum.path.base.Path method), 93
mkdir() (plumbum.path.local.LocalPath method), 97
mkdir() (plumbum.path.remote.RemotePath method),

100
module

plumbum.cli.application, 55
plumbum.cli.progress, 63
plumbum.cli.switches, 57
plumbum.cli.terminal, 61
plumbum.cli.termsize, 63
plumbum.colorlib, 105
plumbum.colorlib.factories, 112
plumbum.colorlib.names, 114
plumbum.colorlib.styles, 108
plumbum.colors, 104
plumbum.commands.base, 64
plumbum.commands.daemons, 72
plumbum.commands.modifiers, 72
plumbum.commands.processes, 74
plumbum.fs.atomic, 102
plumbum.fs.mounts, 104
plumbum.machines.env, 75
plumbum.machines.local, 77
plumbum.machines.paramiko_machine, 88
plumbum.machines.remote, 82
plumbum.machines.session, 80
plumbum.machines.ssh_machine, 85
plumbum.path.base, 90
plumbum.path.local, 95
plumbum.path.remote, 98
plumbum.path.utils, 102

mount_table() (in module plumbum.fs.mounts), 104
mounted() (in module plumbum.fs.mounts), 104
MountEntry (class in plumbum.fs.mounts), 104
move() (in module plumbum.path.utils), 102
move() (plumbum.path.base.Path method), 93
move() (plumbum.path.local.LocalPath method), 97
move() (plumbum.path.remote.RemotePath method), 100

N
name (plumbum.colorlib.styles.Color property), 109
name (plumbum.path.base.Path property), 91
name (plumbum.path.local.LocalPath property), 96
name (plumbum.path.remote.RemotePath property), 99
name_camelcase (plumbum.colorlib.styles.Color prop-

erty), 109
next() (plumbum.fs.atomic.AtomicCounterFile method),

103
nohup() (plumbum.commands.base.BaseCommand

method), 67
nohup() (plumbum.machines.remote.BaseRemoteMachine.RemoteCommand

method), 84
nohup() (plumbum.machines.remote.RemoteCommand

method), 83

Index 133

Plumbum Shell Combinators Documentation, Release 1.8.2

nohup() (plumbum.machines.ssh_machine.SshMachine
method), 86

now() (plumbum.colorlib.Style method), 106
now() (plumbum.colorlib.styles.Style method), 110
number (plumbum.colorlib.styles.Color attribute), 108

O
only_basic() (plumbum.colorlib.names.FindNearest

method), 114
only_colorblock() (plumbum.colorlib.names.FindNearest

method), 114
only_grey() (plumbum.colorlib.names.FindNearest

method), 114
only_simple() (plumbum.colorlib.names.FindNearest

method), 114
open() (plumbum.fs.atomic.AtomicCounterFile class

method), 103
open() (plumbum.path.base.Path method), 93
open() (plumbum.path.local.LocalPath method), 97
open() (plumbum.path.remote.RemotePath method), 101

P
ParamikoMachine (class in

plumbum.machines.paramiko_machine),
88

ParamikoMachine.RemoteCommand (class in
plumbum.machines.paramiko_machine),
89

ParamikoPopen (class in
plumbum.machines.paramiko_machine),
88

parent (plumbum.path.base.Path property), 95
parents (plumbum.path.base.Path property), 95
parts (plumbum.path.base.Path property), 94
Path (class in plumbum.path.base), 90
path (plumbum.machines.env.BaseEnv property), 77
path() (plumbum.machines.local.LocalMachine

method), 79
path() (plumbum.machines.remote.BaseRemoteMachine

method), 84
pgrep() (plumbum.machines.local.LocalMachine

method), 79
pgrep() (plumbum.machines.remote.BaseRemoteMachine

method), 85
PidFile (class in plumbum.fs.atomic), 103
PidFileTaken, 103
pipe() (plumbum.commands.modifiers.PipeToLoggerMixin

method), 73
pipe_debug() (plumbum.commands.modifiers.PipeToLoggerMixin

method), 73
pipe_info() (plumbum.commands.modifiers.PipeToLoggerMixin

method), 73
Pipeline (class in plumbum.commands.base), 68

PipeToLoggerMixin (class in
plumbum.commands.modifiers), 72

plumbum.cli.application
module, 55

plumbum.cli.progress
module, 63

plumbum.cli.switches
module, 57

plumbum.cli.terminal
module, 61

plumbum.cli.termsize
module, 63

plumbum.colorlib
module, 105

plumbum.colorlib.factories
module, 112

plumbum.colorlib.names
module, 114

plumbum.colorlib.styles
module, 108

plumbum.colors
module, 104

plumbum.commands.base
module, 64

plumbum.commands.daemons
module, 72

plumbum.commands.modifiers
module, 72

plumbum.commands.processes
module, 74

plumbum.fs.atomic
module, 102

plumbum.fs.mounts
module, 104

plumbum.machines.env
module, 75

plumbum.machines.local
module, 77

plumbum.machines.paramiko_machine
module, 88

plumbum.machines.remote
module, 82

plumbum.machines.session
module, 80

plumbum.machines.ssh_machine
module, 85

plumbum.path.base
module, 90

plumbum.path.local
module, 95

plumbum.path.remote
module, 98

plumbum.path.utils
module, 102

134 Index

Plumbum Shell Combinators Documentation, Release 1.8.2

PlumbumLocalPopen (class in
plumbum.machines.local), 77

poll() (plumbum.commands.modifiers.Future method),
72

poll() (plumbum.machines.session.SessionPopen
method), 81

pop() (plumbum.machines.env.BaseEnv method), 76
pop() (plumbum.machines.remote.RemoteEnv method),

82
popen() (plumbum.commands.base.BaseCommand

method), 66
popen() (plumbum.commands.base.BaseRedirection

method), 69
popen() (plumbum.commands.base.BoundCommand

method), 70
popen() (plumbum.commands.base.BoundEnvCommand

method), 70
popen() (plumbum.commands.base.ConcreteCommand

method), 71
popen() (plumbum.commands.base.Pipeline method),

68
popen() (plumbum.commands.base.StdinDataRedirection

method), 72
popen() (plumbum.machines.local.LocalCommand

method), 78
popen() (plumbum.machines.paramiko_machine.ParamikoMachine

method), 90
popen() (plumbum.machines.remote.BaseRemoteMachine

method), 85
popen() (plumbum.machines.remote.BaseRemoteMachine.RemoteCommand

method), 84
popen() (plumbum.machines.remote.RemoteCommand

method), 83
popen() (plumbum.machines.session.ShellSession

method), 81
popen() (plumbum.machines.ssh_machine.SshMachine

method), 86
positional (class in plumbum.cli.switches), 60
PositionalArgumentsError, 57
Predicate (class in plumbum.cli.switches), 61
preferred_suffix() (plumbum.path.base.Path

method), 93
print() (plumbum.colorlib.Style method), 106
print() (plumbum.colorlib.styles.Style method), 110
print_() (plumbum.colorlib.Style method), 106
print_() (plumbum.colorlib.styles.Style method), 110
ProcessExecutionError, 74
ProcessLineTimedOut, 74
ProcessTimedOut, 74
Progress (class in plumbum.cli.progress), 64
Progress (class in plumbum.cli.terminal), 62
ProgressAuto (class in plumbum.cli.progress), 64
ProgressBase (class in plumbum.cli.progress), 63
ProgressIPy (class in plumbum.cli.progress), 64

prompt() (in module plumbum.cli.terminal), 62
PuttyMachine (class in

plumbum.machines.ssh_machine), 87
python (plumbum.machines.local.LocalMachine at-

tribute), 80
python (plumbum.machines.remote.BaseRemoteMachine

property), 84

R
Range (class in plumbum.cli.switches), 60
range() (plumbum.cli.progress.ProgressBase class

method), 63
read() (plumbum.path.base.Path method), 93
read() (plumbum.path.local.LocalPath method), 97
read() (plumbum.path.remote.RemotePath method), 100
read_atomic() (plumbum.fs.atomic.AtomicFile

method), 103
read_shared() (plumbum.fs.atomic.AtomicFile

method), 103
readline() (in module plumbum.cli.terminal), 61
readline() (plumbum.machines.session.MarkedPipe

method), 80
ready() (plumbum.commands.modifiers.Future

method), 72
RedirectionError, 65
relative_to() (plumbum.path.base.Path method), 94
RelativePath (class in plumbum.path.base), 95
release() (plumbum.fs.atomic.PidFile method), 103
RemoteCommand (class in plumbum.machines.remote), 83
RemoteEnv (class in plumbum.machines.remote), 82
RemotePath (class in plumbum.path.remote), 99
RemoteWorkdir (class in plumbum.path.remote), 101
remove() (plumbum.machines.env.EnvPathList method),

75
rename() (plumbum.path.base.Path method), 93
reopen() (plumbum.fs.atomic.AtomicFile method), 102
representation (plumbum.colorlib.styles.Color at-

tribute), 109
reset (plumbum.colorlib.Style property), 105
reset (plumbum.colorlib.styles.Style property), 110
reset() (plumbum.fs.atomic.AtomicCounterFile

method), 103
resolve() (plumbum.path.base.Path method), 95
returncode (plumbum.commands.modifiers.Future

property), 72
reverse (plumbum.machines.ssh_machine.SshTunnel

property), 85
rgb() (plumbum.colorlib.factories.ColorFactory

method), 112
root (plumbum.path.base.Path property), 91
root (plumbum.path.local.LocalPath property), 98
root (plumbum.path.remote.RemotePath property), 101
run() (plumbum.cli.application.Application class

method), 57

Index 135

Plumbum Shell Combinators Documentation, Release 1.8.2

run() (plumbum.commands.base.BaseCommand
method), 67

run() (plumbum.machines.session.ShellSession method),
82

run_bg() (plumbum.commands.base.BaseCommand
method), 68

run_fg() (plumbum.commands.base.BaseCommand
method), 68

run_nohup() (plumbum.commands.base.BaseCommand
method), 68

run_proc() (in module plumbum.commands.base), 65
run_proc() (in module plumbum.commands.processes),

74
run_retcode() (plumbum.commands.base.BaseCommand

method), 68
run_tee() (plumbum.commands.base.BaseCommand

method), 68
run_tf() (plumbum.commands.base.BaseCommand

method), 68

S
session() (plumbum.machines.local.LocalMachine

method), 79
session() (plumbum.machines.paramiko_machine.ParamikoMachine

method), 89
session() (plumbum.machines.remote.BaseRemoteMachine

method), 84
session() (plumbum.machines.ssh_machine.PuttyMachine

method), 88
session() (plumbum.machines.ssh_machine.SshMachine

method), 86
SessionPopen (class in plumbum.machines.session), 81
Set (class in plumbum.cli.switches), 61
setenv() (plumbum.commands.base.BaseCommand

method), 66
sftp (plumbum.machines.paramiko_machine.ParamikoMachine

property), 89
ShellSession (class in plumbum.machines.session), 81
ShellSessionError, 80
ShowHelp, 55
ShowHelpAll, 55
ShowVersion, 55
shquote() (in module plumbum.commands.base), 65
simple (plumbum.colorlib.Style property), 107
simple (plumbum.colorlib.styles.Style property), 111
simple() (plumbum.colorlib.factories.ColorFactory

method), 112
split() (plumbum.path.base.Path method), 94
SSHCommsChannel2Error, 80
SSHCommsError, 80
SshMachine (class in plumbum.machines.ssh_machine),

85
SshTunnel (class in plumbum.machines.ssh_machine),

85

start() (plumbum.cli.progress.Progress method), 64
start() (plumbum.cli.progress.ProgressBase method),

63
start() (plumbum.cli.progress.ProgressIPy method), 64
start() (plumbum.cli.terminal.Progress method), 62
stat() (plumbum.path.base.Path method), 92
stat() (plumbum.path.local.LocalPath method), 96
stat() (plumbum.path.remote.RemotePath method), 99
StatRes (class in plumbum.path.remote), 98
stderr (plumbum.commands.modifiers.Future property),

72
StderrRedirection (class in

plumbum.commands.base), 71
StdinDataRedirection (class in

plumbum.commands.base), 71
StdinRedirection (class in plumbum.commands.base),

71
stdout (plumbum.colorlib.factories.StyleFactory prop-

erty), 113
stdout (plumbum.colorlib.Style property), 105
stdout (plumbum.colorlib.StyleFactory property), 107
stdout (plumbum.colorlib.styles.Style property), 110
stdout (plumbum.commands.modifiers.Future property),

72
StdoutRedirection (class in

plumbum.commands.base), 71
stem (plumbum.path.base.Path property), 91
stem (plumbum.path.local.LocalPath property), 96
stem (plumbum.path.remote.RemotePath property), 101
str_time_remaining()

(plumbum.cli.progress.ProgressBase method),
63

string_contains_colors() (plumbum.colorlib.Style
class method), 107

string_contains_colors()
(plumbum.colorlib.styles.Style class method),
111

string_filter_ansi() (plumbum.colorlib.Style class
method), 107

string_filter_ansi() (plumbum.colorlib.styles.Style
class method), 111

Style (class in plumbum.colorlib), 105
Style (class in plumbum.colorlib.styles), 109
StyleFactory (class in plumbum.colorlib), 107
StyleFactory (class in plumbum.colorlib.factories),

113
subcommand() (plumbum.cli.application.Application

class method), 56
SubcommandError, 58
suffix (plumbum.path.base.Path property), 92
suffix (plumbum.path.local.LocalPath property), 96
suffix (plumbum.path.remote.RemotePath property), 99
suffixes (plumbum.path.base.Path property), 92
suffixes (plumbum.path.local.LocalPath property), 96

136 Index

Plumbum Shell Combinators Documentation, Release 1.8.2

suffixes (plumbum.path.remote.RemotePath property),
99

switch() (in module plumbum.cli.switches), 58
SwitchAttr (class in plumbum.cli.switches), 59
SwitchCombinationError, 57
SwitchError, 57
symlink() (plumbum.path.base.Path method), 94
symlink() (plumbum.path.local.LocalPath method), 98
symlink() (plumbum.path.remote.RemotePath method),

101

T
tempdir() (plumbum.machines.local.LocalMachine

method), 79
tempdir() (plumbum.machines.remote.BaseRemoteMachine

method), 85
time_remaining() (plumbum.cli.progress.ProgressBase

method), 63
to_html() (in module plumbum.colorlib.names), 114
to_representation() (plumbum.colorlib.Style

method), 107
to_representation() (plumbum.colorlib.styles.Color

method), 109
to_representation() (plumbum.colorlib.styles.Style

method), 111
touch() (plumbum.path.base.Path method), 93
touch() (plumbum.path.local.LocalPath method), 97
touch() (plumbum.path.remote.RemotePath method),

100
true (plumbum.colorlib.Style property), 107
true (plumbum.colorlib.styles.Style property), 111
tunnel() (plumbum.machines.ssh_machine.SshMachine

method), 86

U
uid (plumbum.path.base.Path property), 92
uid (plumbum.path.local.LocalPath property), 96
uid (plumbum.path.remote.RemotePath property), 99
unbind_switches() (plumbum.cli.application.Application

class method), 56
UnknownSwitch, 57
unlink() (plumbum.path.base.Path method), 94
unlink() (plumbum.path.local.LocalPath method), 98
unlink() (plumbum.path.remote.RemotePath method),

100
up() (plumbum.path.base.Path method), 91
update() (plumbum.machines.env.BaseEnv method), 76
update() (plumbum.machines.remote.RemoteEnv

method), 82
upload() (plumbum.machines.paramiko_machine.ParamikoMachine

method), 90
upload() (plumbum.machines.remote.BaseRemoteMachine

method), 85

upload() (plumbum.machines.ssh_machine.SshMachine
method), 87

use_color (plumbum.colorlib.factories.StyleFactory
property), 113

use_color (plumbum.colorlib.StyleFactory property),
107

user (plumbum.machines.env.BaseEnv property), 77

V
Validator (class in plumbum.cli.switches), 60
value (plumbum.cli.progress.ProgressBase property), 63
value (plumbum.cli.progress.ProgressIPy property), 64
values() (plumbum.machines.env.BaseEnv method), 76
version() (plumbum.cli.application.Application

method), 57

W
wait() (plumbum.commands.modifiers.Future method),

72
wait() (plumbum.machines.session.SessionPopen

method), 81
walk() (plumbum.path.base.Path method), 91
which() (plumbum.machines.local.LocalMachine class

method), 78
which() (plumbum.machines.remote.BaseRemoteMachine

method), 84
with_cwd() (plumbum.commands.base.BaseCommand

method), 66
with_env() (plumbum.commands.base.BaseCommand

method), 66
with_name() (plumbum.path.base.Path method), 92
with_name() (plumbum.path.local.LocalPath method),

96
with_name() (plumbum.path.remote.RemotePath

method), 99
with_suffix() (plumbum.path.base.Path method), 92
with_suffix() (plumbum.path.local.LocalPath

method), 96
with_suffix() (plumbum.path.remote.RemotePath

method), 100
wrap() (plumbum.cli.progress.ProgressBase class

method), 63
wrap() (plumbum.colorlib.Style method), 106
wrap() (plumbum.colorlib.styles.Style method), 110
write() (plumbum.path.base.Path method), 93
write() (plumbum.path.local.LocalPath method), 97
write() (plumbum.path.remote.RemotePath method),

100
write_atomic() (plumbum.fs.atomic.AtomicFile

method), 103
WrongArgumentType, 58

Index 137

	News
	Cheat Sheet
	Basics
	Piping
	Redirection
	Working-directory manipulation
	Foreground and background execution
	Command nesting
	Remote commands (over SSH)
	CLI applications
	Sample output

	Colors and Styles
	Sample output

	Development and Installation
	Requirements
	Download

	User Guide
	Local Commands
	Pipelining
	Input/Output Redirection
	Exit Codes
	Run and Popen
	Background and Foreground
	Command Nesting

	Paths
	The Local Object
	Working Directory
	Environment

	Remote
	Remote Machines
	Working Directory and Environment
	Tunneling

	Remote Commands
	Nesting Commands
	Piping
	Redirection

	Paramiko Machine
	Tunneling Example

	Remote Paths

	Utilities
	Command-Line Interface (CLI)
	Application
	Colors

	Switch Functions
	Arguments
	Repeatable Switches
	Mandatory Switches
	Dependencies
	Mutual Exclusion
	Grouping

	Switch Attributes
	Environment Variables

	Main
	Positional argument validation
	Switch Abbreviations

	Sub-commands
	Configuration parser
	Terminal Utilities
	See Also

	TypedEnv
	TypedEnv as an Abstraction Layer
	TypedEnv vs. local.env

	Colors
	Quick start
	Generating Styles
	Colors

	256 Color Support
	Style manipulations
	Unsafe Manipulation
	Safe Manipulation
	Style Combinations

	New color systems
	See Also

	Change Log
	1.8.2
	1.8.1
	1.8.0
	1.7.2
	1.7.1
	1.7.0
	1.6.9
	1.6.8
	1.6.7
	1.6.6
	1.6.5
	1.6.4
	1.6.3
	1.6.2
	1.6.1
	1.6.0
	1.5.0
	1.4.2
	1.4.1
	1.4
	1.3
	1.2
	1.1
	1.0.1
	1.0.0
	0.9.0

	Quick reference guide
	CLI
	Optional arguments
	Validators
	Common options
	Special member variables

	Paths
	Colors

	API Reference
	Package plumbum.cli
	Terminal-related utilities
	Terminal size utility
	Progress bar

	Package plumbum.commands
	Package plumbum.machines
	Remote Machines

	Package plumbum.path
	Utils

	Package plumbum.fs
	Package plumbum.colors
	plumbum.colorlib
	plumbum.colorlib.styles
	plumbum.colorlib.factories
	plumbum.colorlib.names

	Colorlib design
	Generating colors
	Style Factory
	Color Factories

	Style manipulations
	Unsafe Manipulation
	Safe Manipulation
	Style Combinations

	256 Color Support
	The Classes
	Subclassing Style

	See Also

	About
	Credits
	Python Module Index
	Index

